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Abstract

Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in
zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye,
as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm
that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3–5 days post-fertilisation, times
associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1
kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1
morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have
identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the
Pim1 oncogene is required for normal visual function.
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Introduction

Our objective was to investigate the molecular genetics

regulating maturation of visual function in vertebrates. Develop-

ment of the zebrafish visual system is rapid with morphogenesis of

the optic vesicles beginning at ,10 hours post-fertilisation (hpf)

[1]. Rapid proliferation and progressive lamination follows. By

,72 hpf, most retinal cell types are distinguishable, and lamina-

tion of the retina does not significantly change from 3–5 days post-

fertilisation (dpf). However, progression from a morphologically

developed eye, to an eye with robust visual function occurs

between 3–5 dpf [2,3].

A light-evoked locomotor response is detected in zebrafish at

,68 hpf [3]. This startle response likely recapitulates an escape

response invoked by the shadow of an approaching predator [4].

Initially known as the shadow-induced startle response, it was first

assessed by placing larvae in a petri dish, extinguishing a light

source for 1 second and observing whether larvae moved in

response. The related visual motor response (VMR) is assessed

using an automated system which uses an infrared camera to

quantify the movement of larvae in response to lights turned on or

off [4]. Another visual response, the optokinetic response (OKR)

represents the ability of zebrafish to detect contrasting patterns

and is detected from 73 hpf [3,5]. The initial OKR is slow and

sporadic, but improves so that by 96 hpf, larvae track the drum

analogous to adult fish and by 5 dpf, the response is adult-like [6].

The first electrical responses from the retina have been detected as

early as 72 hpf [7]. These responses are also small in amplitude,

requiring high intensity stimuli. Zebrafish electroretinograms

(ERG) are typically recorded from 5 dpf larvae in which responses

are more robust [8].

Here, we avail of Affymetrix GeneChip technology to globally

profile genes with significant differential expression in the zebrafish

eye between 3–5 dpf, as visual function matures. Interestingly,

significantly enhanced expression of Jak-Stat signalling genes, a

pathway typically associated with interferon and cytokine signal-

ling, correlates with maturation of visual function [9]. Pim1–2

kinases, proto-oncogenes and downstream components of Jak-Stat

signalling, unexpectedly displayed differential expression in the

developing eye [10]. Pharmacological and genetic inhibition of

Pim1 kinase results in a specific disruption of visual behaviour and

retinal function. These results highlight a novel role for the Pim1

kinase in visual function.

Materials and Methods

Microarray experiment
Zebrafish were maintained according to standard procedures on

a 14 h light/10 h dark cycle at 28uC. Embryos were obtained by

natural spawning and developmental stages established by time

and morphological criteria. Microarray experiments were per-

formed as previously described [11]. Eyes were dissected from 3, 4
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and 5 days post fertilization (dpf) zebrafish larvae. Total RNA was

extracted and labeled using a two-cycle target labelling protocol

(Affymetrix, Santa Clara, USA) and hybridised with Affymetrix

Zebrafish Genome Arrays. Three biological replicates per time

point were used with equal amounts of RNA. The 3, 4 and 5 dpf

eyes microarray data set was deposited in GEO with accession ID

GSE19320. All experimental protocols were approved by the

UCD Animal Research Ethics Committee, and the University of

Notre Dame Animal Care and Use Committee.

Zebrafish genome reannotation and probe remapping
Gene annotation was based on the zebrafish genome version 9

(Zv9) and integrating gene transcript collections from multiple

genome annotation databases [11]. Transcript data from the

RefSeq, GenBank and Ensembl databases were downloaded from

the UCSC genome browser [12]. Transcripts were clustered into

genes from overlapping coding exons. A customized probe

remapping was performed as previously described [11]. In order

to take advantage of the human genome annotation, human-

zebrafish homology data were downloaded from Ensembl [13],

BioMart [14], ZFIN [15], and NCBI HomoloGene [16]. These

homology databases were combined with the zebrafish genome

annotation databases. Where no functional annotation for a

transcript could be found, cDNA sequences were searched against

the NCBI refseq_protein database using blastx [17]. The highest

scoring human homologs were identified with at least 30% identity

to the query sequence over at least 30% sequence length. Human

KEGG pathway [18] and Gene Ontology [19] annotations were

combined with zebrafish annotations for gene set analysis. Human

retinal disease information was downloaded from RETNET [20].

Microarray data analysis
The Bioconductor package, gcrma, was used to normalize and

summarize microarrays signal intensities [21]. Probe sets detected

at low signal were removed, with maximal log transformed signal

intensity ,6 in all samples. The Bioconductor package, limma, was

used to select differentially expressed genes [22]. P-values from an

eBayes model-based t-test were adjusted using Benjamini &

Hochberg’s method [23]. The threshold for differentially ex-

pressed genes was set as adjusted p-value ,0.05 and fold change

$1.5 or #0.67. For genes with multiple probe sets, a revised

Splicing Index is calculated [11]. If the Splicing Index is #1 and

$21, the probe set expressions were averaged to calculate gene

level expression. Otherwise, the probe set expressions are used

separately to predict alternative splicing patterns. Fisher’s Exact

Test was used to indicate the significance of enriched Gene

Ontology and KEGG pathway.

Real-time PCR Validation
Real-time PCR was performed as previously described [11].

Eyes were dissected from 3 and 5 dpf zebrafish larvae and total

RNA was extracted. Three biological replicates were used for both

time points. cDNA was synthesized with random hexamers using

the Superscript III First-Strand Synthesis System (Invitrogen, UK).

Real-time PCR was performed using the ABI 7900HT Sequence

Detection System. Primers were designed using Primer-BLAST

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and synthe-

sised by Eurofins MWG Operon (Germany). The primers for

different genes are listed in Table S1. 18 s rRNA primers were

used as control. Taqman probes were used as the reporter in the

18 s control samples and SYBR Green was the reporter in all

other reactions. Real-time data were normalized according to 18 s

rRNA.

Histological Analysis
Whole larvae were fixed overnight in a solution of 4%

paraformaldehyde and 2.5% gluteraldehyde diluted in 0.1 M

Sorenson phosphate buffer (pH 7.3) at room temperature.

Samples were then post-fixed in 1% osmium tetroxide in 0.1 M

Sorenson phosphate buffer for 1 hour at room temperature,

dehydrated in ascending concentrations of ethanol to 100% and

embedded in epon resin according to standard methods. Semi-thin

(1 mm) sections were cut using a glass knife and a Reichert-Jung

Ultracut E microtome and visualised by light microscopy using a

Nikon E80i transmission microscope

Immunoblot Analysis
Immunoblots were performed similar to previously described

(Kassen et al., 2007). Protein was harvested from ,30 larvae,

homogenized in 15 ml of extraction buffer (16 PBS/10%

Glycerol/1% Triton X-100/5 mM KPO4/0.05 mM EDTA/16
Complete Protease Inhibitor Cocktail Tablet (Roche; Indianapo-

lis, IN) and a tyrosine and serine/threonine phosphatase inhibitor

cocktail mix (Phosphatase Inhibitor Cocktails 2 and 3, Sigma; St.

Louis, MO) and stored at 220uC. After SDS-PAGE, proteins

were electrotransferred to a PVDF H-Bond membrane (Amer-

sham; Pis-cataway, NJ) and blocked in 16PBS/0.1% Tween-20/

5% non-fat dry milk overnight at 4uC. The membrane was

incubated with immunopurified anti-Stat3 polyclonal antisera

(1:5,000) [24], anti-Socs1 polyclonal antisera (1:5,000), anti-Socs3a

polyclonal antisera (1:2,000) or an anti-actin monoclonal antibody

(1:10,000, Calbiochem; San Diego, CA) overnight at 4uC in

blocking buffer. The membranes were washed in 16 PBS/0.1%

Tween-20 (3610 min), and incubated for 1 hr at room temper-

ature with either an anti-rabbit or anti-mouse HRP-conjugated

secondary antibody (1:10,000, Amersham). The membranes were

washed in 16 PBS/0.1% Tween-20 (3610 min) and the

secondary antibodies were detected with the ECL-Plus system

(Amersham) as described previously [25]. The NIH Image-J

software was used to quantify band intensities on the immunoblots.

For each time point, the intensity of the actin control band was

normalized to the 2 dpf band. For each polyclonal antiserum, the

intensity of the band at each time point was calculated relative to

the actin control at the same time point and the relative amount of

each protein at 2 dpf was set to 1.0. Plotted are the natural log of

the mean values (n = 3) and the standard error of the means.

Generation of Anti-Socs1 and Anti-Socs3a Polyclonal
Antisera

The polyclonal Stat3 antisera used in this study was previously

described [24]. To generate polyclonal antisera against the Socs1

(NP_001003467.1), and Socs3a (NP_956244.1) proteins, an amino

terminal segment of zebrafish Socs1 corresponding to amino acids

1–67 and an interior segment of zebrafish Socs3a corresponding to

amino acids 13–50 were expressed as bacterial fusion proteins

using the pET32a vector (Novagen, San Diego, CA). The fusion

proteins were purified using S-protein agarose and used to

immunize rabbits (Proteintech Group, Chicago, IL). The same

fusion proteins were coupled to separate gel matrix columns

according to the manufacturer protocol (AminoLink Coupling

Gel; Pierce Biotechnology, Rockford, IL) and the anti-Socs1 and

anti-Socs3a polyclonal rabbit antisera immunopurified over these

columns.

Immunohistochemistry
Wild-type zebrafish larvae were fixed in 4% paraformaldehyde

in 5% sucrose/16 PBS, washed in 5% sucrose/16 PBS at room
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Figure 1. Maturation of visual function and correlations to gene expression in larval zebrafish. (A) The morphology of the zebrafish
retina shows no significant changes from 3–5 dpf. However, the OKR (B) and the VMR (C) show significant increases in the number of eye saccades or
the amplitude of locomotor responses to light changes from 3–5 dpf. Lights on is shown as a yellow bar below the diagram, and lights off is shown as
a black bar. (D–H) Overview of microarray results of eye gene expression for 3, 4 and 5 dpf zebrafish eyes. (D) Hierarchical clustering of gene
expression was based on normalized signals (z-scores) using the correlation similarity metric and average linkage clustering. (E) Venn diagram
showing the number of up-regulated and down-regulated transcript-level probe sets between pairwise comparisons using the limma Bayesian model
based t-test. (F–H) Log2 transformed signal intensities of probe sets are depicted as dots, with up-regulated probe sets in red and down-regulated
sets in green.
doi:10.1371/journal.pone.0052177.g001
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Table 3. Zebrafish genes differentially expressed between 5 and 3 dpf were associated with human retinal diseases without
molecular basis.

Diseases OMIM ID Chromosmal location
Homologous zebrafish genes differentially expressed
between 5 and 3 dpf

Retinitis pigmentosa with mental
retardation

Xp21-q21 pim2, tfe3a, rpa2, dt1p1a10l,mao, ndnl2, snx12, wdr45, zc4h2, arr3l,
rp2,atrx, tspan7, hdac8, rps6kal, pl10, pqbp1l,sypb, slc9a7, slc7a3, pja2,
arhgef9, prickle3

Dominant macular dystrophy, North
Carolina type; dominant progressive
bifocal chorioretinal atrophy

136550 6q14-q16.2 ttk,syncripl, tmem30a, elovl4b, hmgn3

Dominant macular dystrophy, cystoid 153880 7p21-p15 igf2bp3, hdac9b, agr2, rpa3, arl4a, arl4ab, tmem106ba, nfe2l3,npy,
tmem106b, macc1, cbx3b

Dominant retinal-cone dystrophy 1 180020 6q25-q26 sod2, ppil4, lrp11

Dominant neovascular inflammatory
vitreoretinopathy

193235 11q13 wnt11r, capn1, actn3b, ucp1, npas4, drap1, pola2, yif1a,pygmb, hsp47,
dpp3, kat5, gpr137, fkbp2, spcs2, rbm14, prdx5, dgat2,ctsf, cd248,chka,
rnf121, peli3

Recessive Joubert syndrome; recessive
MORM syndrome

213300 9q34.3 tubb2c, lcn15, agpat2, col5a1, man1b1

Recessive nonsyndromal congenital
retinal nonattachment

221900 10q21 cdk1

Recessive optic atrophy 258500 8q21-q22 matn4, rpl7, cpne3, plekhf2, slc25a32a, ca2, wwp1, rims2, laptm4b,
znf706, stmn2a, si:ch211-160k22.1

X-linked progressive cone dystrophy 2 300085 Xq27 fgf13, ube2n

X-linked retinitis pigmentosa 300155 Xq26-q27 fgf13, mmgt1, tfdp1, ube2n

X-linked retinitis pigmentosa 300424 Xp22 tmsb, pvalb9, rbb4l, sat1, egfl6, cnksr2

X-linked retinitis pigmentosa 300605 Xq28-qter brd2a, cd99l2,bgn, ssr4, gdi1, g6pd

X-linked optic atrophy 311050 Xp11.4-p11.2 pim2, tfe3a, dt1p1a10l,mao, ndnl2, wdr45, rp2, tspan7, pl10,
pqbp1l,sypb, slc9a7, prickle3

Cone-rod dystrophy; de grouchy syndrome 600624 18q21.1-q21.3 rx1, mbd2,lipg, eef2l2, nfe2l3, lman1,nars,mbd1

Dominant macular dystrophy, North
Carolina type; dominant progressive
bifocal chorioretinal atrophy

600790 6q14-q16.2 ttk,syncripl, tmem30a, elovl4b, hmgn3

Recessive Refsum disease, adult form 600964 10p13 gad2, epb4.1l4, vim, mpp7, myo3a, st8sia6, fam107b, gtpbp4, sephs1,
rbm17, atp5c1, pfkfb3, arhgap12, akr1b15, dhtkd1, hspa14, sdhaf2,
arhgap12a,pfkl

Recessive Usher syndrome, type 1 602097 21q21 zgc:110006

Recessive retinitis pigmentosa 602594 16p12.3-p12.1 plk1, chp2, zgc:153595, loc560874, gprc5b

Recessive retardation, spasticity
and retinal degeneration

602685 15q24 neo1,phb,nptna, stra6, tspan3a, si:dkey-105e17.1, hmg20a, sin3a, neo1

Dominant optic atrophy,Kjer type 605293 18q12.2-q12.3 slc14a2

Recessive cone-rod dystrophy 605549 1q23.1-q23.3 celf3, hsp70l, mcl1a, atp1b1a, atp1b1b, ssr2, mcl1b, sf3b4,myoc, tpm3,
syt11a, aldh9a1a, rab13, rgs5a,ubin, anp32e, selenbp1, ilf2, prrx1b,
gpa33, pfdn2, tmco1, ufc1, cks1b, f11r,fdps, setdb1a, rbm8a, psmd4b,
psmb4,ctsk, ctssb.2, wbp2, pygo2, si:ch211-284a13.1,udu, krtcap2, clk2,
si:ch211-184m19.1, mllt11, pbxip1a

Dominant familial exudative
vitreoretinopathy

605750 11p13-p12 fabp10a,ppib, caprin1a, hipk3

Recessive retinitis pigmentosa 606068 2p15 tmsb, meis1, cyp26b1, pno1, rab1a, suclg1, slc1a4, cnrip1,snrpg, acta1a,
dusp11, atoh8, egr4, fabp1a, ccdc142, anxa4

Recessive Senior-Loken syndrome;
recessive nephronophthisis, Adolescent

606995 3q22.1 bfsp2

Recessive Joubert syndrome 608091 11p12-q13.3 cry3,mdka, fabp10a, capn1, zp2.3, actn3b, ypel3, fen1, hsd17b12b,
npas4, slc43a1a, drap1, pola2, yif1a, rom1, atg13,pygmb, tcn2, psmc3,
dpp3, kat5, gpr137, fkbp2, ms4a17a.11, rbm14, prdx5, ddb2,ctsf, sdhaf2,
cd248,incenp,chka,madd, dhx9, pla2g15, mapk8ip1, peli3

Recessive Leber congenital amaurosis 608553 1p36 ctnnbip1, sepn1,pgd, cdc42, rer1, ela3l,
ela2,hnrnpc,nudc,tardbp,srm,ddost, padi2, eno1, atad3b, rcc2,
zgc:136474, angptl7, casp9, tpx2, gale, sst3, plod1a, errfi1, igsf21b,
rap1gap, plekhg5, hp1bp3,gabrd, kiaa0090, mfn2, e2f2, lactbl1
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temperature, cryoprotected in 30% sucrose/16PBS overnight at

4uC and embedded in Tissue Freezing Medium or OCT. 10–

12 mm sections were cut and thaw-mounted onto charged slides.

The sections were rehydrated using PBS and blocked for 1 hr

using 2% (vol/vol) normal goat serum, 1% bovine serum albumin

and 0.1% Triton X-100 or 2% normal goat serum/0.2% Triton

X-100/1% DMSO, in PBS. Sections were incubated overnight at

4uC with the primary antibody diluted in blocking buffer (anti-

Stat3 1:200, anti-Socs1 1:50, anti-Socs3a 1:50 or anti-Pim1

(K0267; Sigma-Aldrich) 1:200) Slides were washed in PBS before

being incubated with a 1:200 dilution of a Cy3-conjugated goat

anti-rabbit antibody in 1% Triton X-100/PBS or a AF594-

conjugated goat anti-rabbit IgG secondary antibody (2 mg/ml,

Molecular Probes; Eugene, OR) diluted 1:500 in blocking buffer.

After washing with PBS the slides were washed with PBS and

mounted in Aqua Poly/Mount (Polysciences Inc.) or ProLong

Gold (Invitrogen) Sections were imaged using a fluorescent

microscope (Axioplan 2; Carl Zeiss Meditec, Inc. or a Leica

TCS SP2 laser scanning confocal microscope).

In situ hybridization
Total RNA was isolated from zebrafish embryos at 5 dpf using

Trizol (Invitrogen) and reverse transcribed using random primers

with the Superscript III Preamplification System (Invitrogen). The

Socs1, Socs3a and Stat3 cDNAs were amplified using Platinum

Taq (Invitrogen), and Pim1 cDNA was amplified using Crimson

taq (New England Biolabs) with primers listed in Table S1, using

an annealing temperature of 60uC. PCR products were gel

purified (QIAquick Gel Extraction, Qiagen). Socs1, Socs3a and

Stat3 were cloned into pCR II-TOPO. Pim1 was cloned into

pGEM-T Easy Vector. Plasmids were sequenced to confirm the

identity of the cDNAs. The Socs1, Socs3a and Stat3 cDNA

containing plasmids were linearized with either HindIII or NotI

and precipitated, in vitro transcribed into antisense and sense

Table 3. Cont.

Diseases OMIM ID Chromosmal location
Homologous zebrafish genes differentially expressed
between 5 and 3 dpf

Dominant macular dystrophy, late onset;
dominant macular dystrophy with lens
zonules;

608752 11q23.3 arcn1, hyou1, bace1, sc5dl, apoa1, usp2a,mll

Dominant macular dystrophy 608850 5p15.33-p13.1 sdha,aktip, trip13, dnajc21, prdm9, enoph1, tars, sub1, c9, skp2,rictor,
sb:cb734, ube2ql1, march6

Recessive retinitis pigmentosa with
posterior column ataxia (PCARP)

609033 1q32.3 btg2, prox1, ptgs2a,aspm, atf3, camk1g,pdca, camk1g, b3galt2, nucks1,
klhl12, smyd2a, eef1a1,mybph, pkp1

Recessive foveal hypoplasia and anterior
segment dysgenesis

609218 16q23.2-q24.2 cotl1, osgin1, zc3h18, jph3

Recessive retinitis pigmentosa, severe 609913 1p21.2-p13.3 psma5, abcd3a, hiat1b, amy2a, prmt6, dennd2d, col11a1, cnn3b,
rnpc3,mybph,agl, ptbp2, slc6a17, ntng1

Dominant retinitis pigmentosa 610359 2q11.2 zgc:66433, dusp2, lonrf2

Dominant optic atrophy 610708 22q12.1-q13.1 maff, pvalb2, mcm5,selm, drg1,mb, ewsr1b, myh9, slc16a8, sgsm3,
pik3ip1, ewsr1a, tcn2, kdelr3, rnf185, csnk1db, zgc:76871, rbfox2,
tomm22, apol1, cacng2, mkl1

Dominant cavitary optic disc anomalies 611543 12q13.13-q14.3 copz1, cry1a, cry1b,npffl, mdm2, krt4,dcn, mkrn1, scn8aa, hsp90b1,
dusp6,pah, zgc:64098, nr4a1, ppp1r12a,snrpfl,pmelb, tuba1l, ube2n,
chpt1,ung, cdk2, tmed2, ptpn11b, krt18, btg1, dhrs9, atp5g2, dazap2,
ctdsp2, tuba1l2, ckap4, arpc3, msrb3, slc9a7, cela1, slc38a4, tbc1d15,iscu,
col2a1a, ric8b,rarga,ctdspla, znf385a, anks1b, atp2a2b, stat2,
acss3,hnrnpm, csrnp2

Dominant macular dystrophy, benign
concentric annular

6p12.3-q16 ttk,syncripl, tmem30a, fbxo9, tram2, bmp5, elovl4b, rcan2, ptp4a1,
hmgn3, lmbrd1, eef1a1,mut

Cone-rod dystrophy 17q spon2b, ppm1e, bactin1, actc1a, cmlc1, psme3, nme2b.2, unc119b,
kcnh6,aldocb, col1a1a,col1a1b, hoxb3a, traf4b, kpna2, fzd2, gngt2a,
birc5a, sepw2b, sepw2a, aanat1, ddx5, znf207b, tob1b, psmd12, cx43.4,
smarce1, eftud2, sec14l1, slc9a3r1, klhl11, fkbp10, pdk2, srsf2, psmb3,
socs3a, psmd11b, wipi1, msi2b,phb, srsf1a, tob1a, usp36, atp5g2, arl4d,
arl5c, csnk1db, tmem49, mettl3, nptx1, med24, krt17, suz12a,
psmc5,prkca, gdpd1, ccdc47, osbpl7, grb2, prkar1aa, mettl2a, krt17,
mrpl12, rgs9, wbp2, nmt1a, zgc:112372,thraa, krt1-19d, ca10a, mmd,
acsf2, zgc:153240, cuedc1, krt20, abi3,hlf, psmd11a, taf15, akap1b, nbr1,
abca5,acaca, msl1, cq108_danre, spata20, p4hb, leprel4, loc560874, nbr1

Dominant macular dystrophy, North
Carolina-like with progressive
sensorineural hearing loss

14q11.2 psmb5,vmhc, smyhc1,hnrnpc, mettl3,vmhcl, abhd4,homez,
dad1,homez,nars

Dominant macular dystrophy 19q13.31-q13.32 ckma,apoeb,ckmb, calm3a, gps2, sae1,apoe, bbc3,relb

Recessive retinitis pigmentosa 4q32-q34 hand2,glrba, spcs3, hmgb2l, gucy1a3, spock3, fbxo8

Recessive vitreoretinal dystrophy 22q13 maff, pane1, samm50, slc16a8, sgsm3, rangap1, kdelr3, csnk1db,
tomm22, mapk11,tef,tspo, sult4a1,selo, saps2, mkl1, fam118b, frmpd1

Recessive retinitis pigmentosa 2p23.3 dpysl5a, smarce1, krtcap3,hadha,hadha, uts1, si:dkey-34f16.5, adcy3

doi:10.1371/journal.pone.0052177.t003
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digoxigenin (DIG)-labeled RNA probes (Roche DIG RNA

Labeling Kit SP6/T7) with either T7 or SP6 RNA polymerase.

Pim1 containing plasmids were linearized with either SacI or

NcoI, and in vitro transcribed into antisense and sense DIG-

labeled RNA probes as above. The in vitro transcription reactions

were terminated by adding 0.2 M ethylenediaminetetraacetic acid

(EDTA) and the riboprobes were precipitated using ammonium

acetate and 100% ethanol. The quality of the in vitro transcribed

RNA was confirmed by electrophoresis through a 1% agarose

formaldehyde gel. Embryos were fixed overnight at 4uC in 4%

paraformaldehyde (PFA) and in situ hybridization was performed

on whole embryos as previously described [26]. After in situ

hybridization, the embryos were re-fixed overnight at 4uC in 4%

PFA, cryopreserved, and sectioned at 12 mm.

Morpholino knockdown
Morpholino oligonucleotides were designed by Gene Tools

(Gene Tools LLC, Philomath, OR) and targeted the pim1 exon2-

intron2 splice junction (59 TCCTCCATTGAGGGAACC-

TACCGGC), the pim1 exon4-intron4 splice junction (59

GGTCATGCAAATGGCTCTTACCGTC), the stat3 translation

blocking (59 CAGATAAATCGTCCTCCACGGAAAC), the

socs3a translation blocking (59 TACACACCAAACCCT-

Figure 2. Summary of differentially expressed genes between 5 versus 3 dpf eyes using GO biological process annotation. A, B: GO
summary for up-regulated genes between 5 versus 3 dpf. C, D: GO summary for down-regulated genes between 5 versus 3 dpf. A, C: pie chart
presenting the number of differentially expressed genes in each GO category. B, D: bar plot presenting the significance of each GO term in Q-values.
Q-value,0.05 was set as the significance threshold as depicted by the red dashed line.
doi:10.1371/journal.pone.0052177.g002
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GAGCTGCCGG), the socs1 translation blocking (59

TGCGCCACCATCCTACAGGAAAGAC), or the standard

control morpholino (designed by GeneTools as not being

complementary to any known sequence in the zebrafish genome).

Morpholino oligonucleotides were resuspended in Danieau buffer

(58 mM NaCl, 0.7 mM KCl,0.4 mM MgSO4, 0.6 mM

Ca(NO3)2, 5.0 mM HEPES pH 7.6) and injected into wild type,

1–2 cell zebrafish embryos with phenol red tracer dye. The stat3,

socs3a and socs1 5-base mismatch, and standard control morpho-

linos were injected at a final concentration of 0.25 mM. The pim1

morpholino and standard control were injected at final concen-

tration of 0.025 mM.

Sequence and structure analysis of the pim gene family
Zebrafish Pim protein sequences from RefSeq database (Pim1

NP_001070859, Pim2 NP_571614 and Pim3 NP_001030150)

were aligned with Pim protein sequences from other species using

ClustalW [27]. The neighbour joining trees with bootstrapping

were constructed using Seaview [28]. The 3-D structure of

zebrafish Pim1 was predicted using the Swiss-Model alignment

mode [29]. The modeling template was the human PIM1 crystal

structure 3BGP from Protein Data Bank [30] and the accuracy of

the predictions were indicated using Qmean values [31]. Drug

docking was predicted using SwissDock with default settings [32].

The top-ranked binding model was used to infer the drug docking

site. The 3-D structure of the interaction model was analyzed

using Swiss-Pdbviewer [33].

Zebrafish Drug Treatment and Functional Assay
For drug treatments with Pim1 inhibitor 2 (Tocris, USA) and

Pim1 inhibitor II (EMD Millipore, USA), larvae were placed in

embryo medium and incubated with drug dissolved in 0.1% or 1%

DMSO at 28uC on a 14 h light/10 h dark cycle. For assessment of

visual behaviour using OKR, larvae were placed in a petri dish

Table 4. Top 3 over represented GO terms by the differentially expressed genes between 5 versus 3 dpf for each GO category.

GO term
No. of differentially expressed
genes in the GO term

No. of all genes annotated
with the GO term Q-value

GO terms enriched with up regulated genes between 5 versus 3 dpf

Biological Process

GO:0050896 response to stimulus 22 62 0.0014

GO:0060337 type I interferon-mediated signaling pathway 9 13 0.0014

GO:0034097 response to cytokine stimulus 11 19 0.0014

GO:0009416 response to light stimulus 12 23 0.0016

Cellular Component

GO:0005576 extracellular region 54 285 0.0547

GO:0005741 mitochondrial outer membrane 13 43 0.0680

GO:0005740 mitochondrial envelope 6 12 0.0680

GO:0030133 transport vesicle 5 10 0.0993

Molecular Function

GO:0003913 DNA photolyase activity 7 9 0.0028

GO:0046983 protein dimerization activity 14 41 0.0279

GO:0008236 serine-type peptidase activity 8 18 0.0536

GO:0004114 3,5-cyclic-nucleotide phosphodiesterase activity 4 5 0.0547

GO terms enriched with down regulated genes between 5 versus 3 dpf

Biological Process

GO:0000278 mitotic cell cycle 61 159 0.0000

GO:0000082 G1/S transition of mitotic cell cycle 44 94 0.0000

GO:0031145 anaphase-promoting complex-dependent proteasomal
ubiquitin-dependent protein catabolic process

35 65 0.0000

GO:0000216 M/G1 transition of mitotic cell cycle 33 62 0.0000

Cellular Component

GO:0000502 proteasome complex 28 48 0.0000

GO:0005783 endoplasmic reticulum 91 343 0.0000

GO:0005788 endoplasmic reticulum lumen 22 43 0.0000

GO:0005581 collagen 10 11 0.0000

Molecular Function

GO:0008307 structural constituent of muscle 12 18 0.0000

GO:0005201 extracellular matrix structural constituent 11 16 0.0000

GO:0005509 calcium ion binding 50 191 0.0000

GO:0000166 nucleotide binding 145 783 0.0002

doi:10.1371/journal.pone.0052177.t004
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containing embryo medium/9% methylcellulose [5]. The petri

dish was placed inside a drum containing alternating black and

white stripes (18u per stripe, contrast 99%) rotating at a speed of

16 rpm. The drum was rotated for 30 seconds clockwise then

30 seconds counter clockwise and the number of eye saccades

counted.

The visual motor response (VMR) behavior was recorded using

a Zebrabox (Viewpoint, France) infrared video tracking system.

Individual larvae were placed in single wells of a 96 well plate. The

assay protocol consisted of 30 min settling, followed by four

20 min periods of light ON and OFF. Assay parameters were set

to detection sensitivity 10, burst 25, freeze 3 and the activity of

individual larvae was integrated into 1 second bins. Peak activities

were averaged from the duplicate on and off responses,

respectively. In order to investigate the reversibility of the drug

treatment, zebrafish larvae were treated with Pim1 inhibitor II for

1 hour at 5 dpf, the VMR recorded, then the drug was washed off

using embryo medium, and after 7–8 hours settling and the VMR

was recorded again.

A non-visual behavior, the touch response (TR) was analysed by

touching larvae with a needle and scoring the locomotor response.

To measure eye size, zebrafish larvae were immobilised in embryo

medium/9% methylcellulose imaged using a brightfield micro-

scope (Olympus SZX16 stereo zoom microscope) and eye

diameter measured using CellF software (Olympus).

Electroretinography
Zebrafish larvae from the Tü strain were treated at 3 dpf with

100 mM pim 1 inhibitor 2 dissolved in embryo medium. Control

larvae were raised from 3–5 dpf in an equivalent amount of DMSO

(0.1%). At 5 dpf, larvae were washed in embryo medium to remove

the drug/DMSO. Electroretinography was performed on control

(n = 5) and Pim1 inhibitor 2 treated (n = 15) fish following established

methods [34] with the following modifications: three flash intensities

were used (22.0 log, 21.0 log and 0) and flash duration was 20 ms.

Raw data from the sample groups were compared using an

independent 2-sample t-test with unequal variances.

Results

Maturation of Visual Function in Zebrafish
From 3–5 dpf, the gross morphology of the zebrafish retina

changes little except in size (Figure 1A), however visual function

matures in this timeframe. The development of visual function in

zebrafish larvae was analysed by both optokinetic response (OKR)

and visual motor response (VMR) assays [4,5]. The OKR is a

visual behaviour assay in which the number of saccadic responses

of the eye to rotating black and white stripes is counted. At 2 days

post-fertilisation (dpf), no larvae exhibit saccadic responses

(Figure 1B). At 3 dpf, ,90% of the larvae exhibit saccadic

responses; but the average response is only ,5 saccades per

minute. However, by 5 dpf, all larvae respond robustly to the

rotating stripes with an average of ,20 saccades per minute. The

VMR reflects locomotor responses to changes in lighting, typified

by a rapid burst of locomotor activity immediately upon turning

lights ON or OFF. Similar to the OKR, the amplitude of the

VMR to both lights ON and OFF significantly increases from 2–

5 dpf (Figure 1C). The VMR is a readout of visual function as

zebrafish larvae without eyes have significantly reduced peak

responses ([4] and McLoughlin et al unpublished). In summary,

visual behaviour assays of zebrafish larvae demonstrate a

significant maturation of visual behaviour from 2–5 dpf.

Transcriptomic and Bioinformatic Analysis
To identify genes whose ocular expression levels correlate with

enhanced visual function, we profiled global gene expression in

Figure 3. Up-regulation of gene and protein expression in the Jak-Stat signaling pathway from 3 to 5 dpf during eye development.
(A) Red blocks are up-regulated genes between 5 versus 3 dpf. Green blocks are down-regulated genes between 5 versus 3 dpf. Grey blocks are
genes not changed between 5 versus 3 dpf. White blocks are genes not targeted by the microarray or not in the zebrafish genome. The gene
interaction network figure is from the KEGG database with modification adapted to zebrafish genes. (B) Signal intensities on the microarrays. *: q-
value,0.05. **: q-value,0.01. (C) Real-time PCR results are depicted as relative abundance compared to lowest abundance sample. *: p-value,0.05.
**: p-value,0.01. (D) Western blot and (E) densitometric analysis of protein samples extracted from zebrafish whole larvae shows that Socs1, Socs3a
and Stat3 expression are up-regulated from 2 to 7 dpf.
doi:10.1371/journal.pone.0052177.g003

Table 5. Significantly over represented KEGG pathway by the differentially expressed genes between 5 versus 3 dpf.

KEGG Pathway
No. of differentially expressed
genes in the pathway

No. of all genes annotated
with the pathway Q-value

Pathways enriched with up regulated genes between 5 versus 3 dpf

Jak-Stat signaling pathway 13 29 0.0012

Insulin signaling pathway 21 70 0.0021

Pancreatic secretion 14 39 0.0036

MAPK signaling pathway 25 98 0.0038

Arginine and proline metabolism 12 32 0.0044

Pathways enriched with down regulated genes between 5 versus 3 dpf

Proteasome 26 39 0.0000

Dilated cardiomyopathy 13 22 0.0003

ECM-receptor interaction 12 21 0.0007

Hypertrophic cardiomyopathy (HCM) 13 25 0.0009

Protein processing in endoplasmic reticulum 34 112 0.0012

doi:10.1371/journal.pone.0052177.t005
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zebrafish eyes at 3, 4 and 5 dpf using the Affymetrix GeneChip

platform. Previously, we reported a significant improvement in the

accuracy of interpreting microarray datasets after integrating

transcripts from multiple databases [11]. In total, 81,749

transcripts from Ensembl, GenBank and ZFIN were clustered

into 29,447 genes with overlapping coding exons. To improve the

specificity of probe mapping, we aligned the Affymetrix probes to

zebrafish genome (Zv9). After problematic probes were filtered,

the remaining 142,712 probes were clustered into 11,460

transcript level probe sets. These represent 8,901 genes out of

the 29,447 genes defined within the zebrafish genome.

Identification of genes differentially expressed in 3–5 dpf
eyes

Genes that are differentially expressed between 3 and 5 dpf eyes

are candidate regulators of visual function. Prior to statistical

analysis of the microarray data, a signal filter was applied to

remove lowly expressed genes leaving 6,839 probe sets. The

microarray data sets were normalized and summarized using the

Bioconductor package gcrma [21], and differentially expressed

genes were selected with limma, using the eBayes model based t-test

[22] (Figure 1D–H). Hierarchical clustering of the global gene

expression data shows that the 4 and 5 dpf eye transcriptomes

cluster together. The largest cohort of differentially expressed

genes occurs between the 5 and 3 dpf eyes with 759 probe sets up-

regulated, and 737 probe sets down-regulated. The number of

differentially expressed genes between 4 and 3 dpf was much

smaller and mostly included in the 5 versus 3 dpf list. Therefore,

genes differentially expressed between 5 versus 3 dpf were further

investigated. The top 50 differentially expressed genes are shown

in Table 1 and categorized by biological process using gene

ontology annotation. Many of the top up-regulated genes at 5 dpf

are related to signal transduction or are known targets of signalling

pathways. The dual specificity phosphatase 5, dusp5, is a negative

regulator of interleukin-2 and MAPK signalling pathways [35].

Bcl2-related ovarian killer b, bokb, and Bcl2 interacting protein 3,

bnip3, relate to Bcl signalling. Bcl2 is a downstream target of the

Jak-Stat signalling pathway [36]. At 3 dpf, many of the

significantly down-regulated genes are related with muscle and

muscle contraction. Genes encoding tropomyosin (tpm3), myosin

(myl1), actin (acta1a), troponin (tnnt3) and collagen (col2a1a, col9a2,

col9a3 and col11a1) show significantly higher expression at 3 dpf.

The top 20 unknown genes (Table 2) only show homology to

human proteins and represent novel ESTs expressed during late

development of the eye.

Genes associated with the maturation of visual function are

candidates for inherited human blindness. Indeed, in this study

several genes previously linked to human retinal disease show

significant differential expression during maturation of visual

function. For example the human orthologs of pantothenate kinase

2 (pank2), retinal outer segment membrane protein 1 (rom1),

Figure 4. Socs3a, Socs1 and Stat3 expression in 2–7 dpf retina. First five panels are immunohistochemical analysis showing increasing
expression of Socs3a, Socs1 and Stat3 throughout the retina from 2–7 dpf. Minimal staining is observed in secondary antibody alone, pre-immune
serum or morphant controls. The last three panels are in-situ hybridisations of socs3a, socs1 and stat3 genes on 2 and 7 dpf. No significant staining
was observed in sense probe controls. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
doi:10.1371/journal.pone.0052177.g004

Figure 5. Cell types in Socs1, Socs3a and Stat3 morphant retinae. Socs1, Socs3a and Stat3 morphant retinae were labelled with
rhodopsin for photoreceptors, gfap:GFP for Muller glia, Hu for inner retinal neurons and TUNEL staining for apoptotic cells. Scale
bar in the upper left panel represents 50 microns and is the same for all the panels.
doi:10.1371/journal.pone.0052177.g005
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phosphodiesterase 6A (pde6a), guanylate cyclase 3 (gc3) and retinitis

pigmentosa 2 (rp2) genes are all associated with degenerative eye

disease in humans and are up-regulated from 3–5 dpf in zebrafish

eyes [37–40]. Genes encoding collagen, col11a1 and col2a1a, are

down-regulated from 3–5 dpf. The human orthologs of col11a1

and col2a1a are associated with Stickler and Marshall syndromes,

which cause visual dysfunction [41,42]. These findings support the

likelihood that other human orthologs of genes up-regulated in 3–

5 dpf eyes may link with human retinal disease. Therefore, we

determined which orthologs of the differentially expressed genes

mapped to regions of the human genome linked with inherited

retinal disease, but for which the causative gene remains unknown.

Figure 6. Sequence and structure analysis of Pim protein family. (A) Neighbor-joining tree with 1000 bootstrap resamplings. Subgroups for
Pim1, Pim2 and Pim3 proteins are highlighted in different colors. C. elegans Prk proteins were used to root the tree. (B) The 3-D structure of zebrafish
Pim1 protein was predicted by homology modeling using Swiss-Model [29] using the human PIM1 crystal structure 3BGP as the template. Estimated
accuracy in Qmean value was colored from blue to red. A lower Qmean value indicates more reliable prediction. The Pim1 inhibitor 2 drug docking
site was predicted using SwissDock [32]. (C) Chemical structure of Pim1 inhibitor 2. (D) Chemical structure of Pim1 inhibitor II. (E) Sequence alignment
of zebrafish Pim proteins with human PIM1 with assigned secondary structure. Residues within 4.5 Å of the Pim1 inhibitor 2 docking site are
highlighted in grey in human and zebrafish Pim1.The Pim1 antibody-binding site is highlighted using a rectangle.
doi:10.1371/journal.pone.0052177.g006
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Table 3 gives details of 40 inherited human retinal diseases and the

genes associated with visual maturation that map near the disease

locus.

Gene Ontology analysis of genes differentially expressed
during maturation of visual function

We next sought to identify biological pathways enriched during

development of visual function using Gene Ontology (GO) [19]

and KEGG pathway [18] analysis. To enhance the functional

annotation of our dataset, the human GO and pathway

annotations were combined with the zebrafish annotation and

Fisher’s exact test was applied to select significantly enriched gene

sets. For a global view of the biological processes associated with

maturation of visual function, the differentially expressed genes

were classified into standard GO terms (Figure 2). 5 dpf eyes show

distinct enrichment of genes associated with ‘‘response to stress/

stimulus’’, ‘‘signal transduction’’ and ‘‘vision/light stimulus’’. 3 dpf

eyes are enriched for genes linked with ‘‘adhesion’’, ‘‘cell cycle’’,

‘‘development’’, and ‘‘muscle development’’.

Table 4 documents the more specific GO terms within

Biological Process, Cellular Component and Molecular Function

that exhibit significant enrichment during visual development. For

gene sets enriched in 5 dpf eyes, the term ‘‘response to light

stimulus’’ was significantly enriched, as expected. Interestingly,

‘‘response to cytokine stimulus’’ and ‘‘type I interferon-mediated

signaling pathway’’ were high ranking terms in genes up-regulated

in 5 dpf eyes. Enrichment of the term ‘‘response to cytokine

stimulus’’ was interesting as this mode of cell signalling, typically

via the Jak-Stat pathway, regulates diverse cells functions [9].

Enrichment of Jak-Stat pathway genes during maturation
of visual function

KEGG, a literature-based pathways database, was used to

profile pathways that were significantly enriched in genes

associated with development of visual function [18] (Table 5). In

5 dpf eyes, the Jak-Stat and insulin signaling pathways were

enriched in the up-regulated gene cohort (Figure 3A). This result is

consistent with the GO analysis. Though the Jak-Stat pathway is

known to regulate various developmental processes [43,44], the

role of this pathway during maturation of visual function in

vertebrates is not well characterized. Thus, we sought to validate

the enhanced expression of Jak-Stat pathway genes as visual

function develops.

Quantitative real-time PCR (qRT-PCR) of the expression of

Jak-Stat signaling genes (e.g. stat1a, socs1, socs3a, pim1, pim2) are

generally in good agreement with the microarray results with

respect to the direction of signal changes and statistical significance

(Figure 3B,C). Although, jak2 and bcl2l1 only demonstrate

significant up-regulation by one method, these genes changed in

the same direction and with similar amplitude using both methods.

Only in the case of ptpn6 were the microarray and QRT-PCR data

contradictory. Immunoblot analysis was conducted on 2 to 7 dpf

larvae to determine if the transcript changes observed were

matched by changes in protein levels of Socs1 and Soc3a. Though

Stat3 was not targeted by the microarray chip, it was also analysed

because of its known regulator role in Jak-Stat signaling. All three

proteins are detected at very low levels at 2 dpf (Figure 3D–E).

However, Socs1, Socs3a and Stat3 did exhibit ,100, ,8 and ,19

fold increases in expression from 2 to 7 dpf, consistent with the

observed mRNAs increases.

Developmental Expression Pattern of Jak-Stat Genes in
zebrafish Eyes

Next we sought to determine the spatial expression patterns of

Socs1, Socs3a and Stat3 in the maturing retina using in situ

hybridization and immunohistochemistry (Figure 4A–B). At 2 dpf,

socs1, socs3a and stat3 RNAs appear to be expressed in the ganglion

cell layer (GCL). By 7 dpf, socs1, socs3a, and stat3 RNAs are

expressed in the GCL and the inner nuclear layer (INL),

additionally, stat3 RNA appears to be expressed at low levels in

the outer nuclear layer (ONL) (Figure 4B). By immunohistochem-

istry, Socs1, Socs3a, and Stat3 polyclonal antisera exhibit

increasing expression in the neuroretina from 2 to 7 dpf

(Figure 4A). At 7 dpf, the three proteins are detected throughout

the neuroretina from the photoreceptor layer to the GCL.

The expression of Socs1, Socs3a, and Stat3 suggests that these

three proteins may play a role in retinal development. To examine

this hypothesis, we knocked down the expression of each of the

three proteins individually using morpholinos. The socs3a and socs1

morphant retinae reveal no significant changes in the patterning of

rod and cone photoreceptors (rhodopsin and green opsin,

respectively), Muller glia (gfap:GFP) or inner retinal neurons

(Hu). In contrast, the stat3 morphants exhibit reduced numbers

of cone photoreceptors (green opsin) and Muller glia. All three

morphants also exhibit a small eye relative to the standard control

morphant (Figure 5), which is likely due to the increased numbers

of TUNEL-positive cells in the morphants relative to the standard

control morphants.

Pim kinases
Another Jak-Stat pathway gene whose enhanced expression in

the eye correlates with maturation of visual function is pim1, and it

became the focus of subsequent analyses. Socs3 is a negative

regulator of Stat3 [45], Pim1 regulates the stability of Socs1 [46]

and is a target of Stat3 [47] compounding our interest in pim1.

Moreover, human PIM1 is an oncogene, thus an association with

visual function was intriguing. Pim1 is a serine-threonine kinase,

known to suppress apoptosis and promote cell cycle progression

[48–50]. In humans, the PIM kinase gene family includes three

functionally redundant paralogs, PIM1–3. In zebrafish, pim1 and

pim2 were previously annotated. Due to high sequence similarity

with its human homolog, we identified zgc:113028, a novel

zebrafish gene, as a pim3 ortholog in zebrafish. Phylogenetic

analyses demonstrate that Pim kinases are highly conserved in

vertebrates and share similar evolutionarily conserved positions

(Figure 6A). The zebrafish Pim1 kinase has a high degree of

sequence identity (73%) with human PIM1, which suggests a

common 3-D structure. Thus, we constructed a 3-D model of

zebrafish Pim1 kinase from the published crystal structure of

human PIM1 [29] (Figure 6B). Interestingly, the inner pocket of

Figure 7. Localisation of Pim1 in the larval eye. (A) Immunohistochemical analysis of Pim1 protein (red) and DAPI (blue) in 3 and 5 dpf larval
eyes reveals Pim1 expression throughout the neuoretina including the ganglion cell layer (arrow) and inner nuclear layer (arrowhead) at both
timepoints. (B) Pim1 RNA is expressed in the INL, GCL and CMZ of 2 and 5 dpf larvae. (C) RT-PCR amplification of pim1 from 5 dpf cDNA results in a
1059 bp band in control morpholino-injected larvae and a second ,500 bp band in pim1 splice site morpholino-injected larvae consistent with
knockdown of pim1.(D) Pim1 expression is present in the ONL, INL and GCL of 5 dpf larvae injected with 0.025 mM standard control morpholino but
highly reduced in 5 dpf larvae injected with 0.025 mM pim1 morpholino. White boxes indicate the areas magnified. MO, morpholino; ONL, outer
nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer; CMZ, ciliary marginal zone; L, lens.
doi:10.1371/journal.pone.0052177.g007
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Figure 8. Larvae treated with Pim1 inhibitors have a slightly reduced number of primary hyaloid vessels and eye size. (A)
Representative images of whole zebrafish larvae treated using Pim1 inhibitors. (B) and (C) zebrafish (n = 17 to 20) treated with Pim1 inhibitor 2 from
3–5 dpf have normal hyaloid vasculature morphology, while treatment with Pim1 inhibitor II from 3–5 dpf slightly reduces the number of primary
hyaloid vessels. Primary hyaloid vessels are pointed using asterisks. P-value was calculated using one way ANOVA with Dunnett’s correction for
multiple comparisons. *:ANOVA p,0.05. (D) Zebrafish larvae treated with Pim1 Inhibitor 2 from 3–5 dpf have a smaller eye. ***: Student’s t test
p,0.001. (E) Retinal lamination appears normal in the larvae with drug-treated from 3–5 dpf. Scale bars are 1 mm (A) and 50 mm (E).
doi:10.1371/journal.pone.0052177.g008
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the ATP-binding domain was predicted with high accuracy,

indicating structural conservation of zebrafish and human Pim1

proteins. In silico drug docking analyses also predict that Pim1

inhibitor 2 can dock in the ATP-binding domain of zebrafish Pim1

(Figure 6 B, E). Although not definitive, these analyses provide

support that PIM1 antibodies and inhibitors can also target

zebrafish Pim1.

Ocular expression of Pim1 kinase
An antibody targeting K71toT84 of human PIM1, a region

which has 11 of 14 amino acids conserved with zebrafish Pim1,

was used for immunohistochemistry on zebrafish retinal sections

(Figure 7A). At 3 dpf, the Pim1 antibody detects low expression

levels in the neuroretina. Expression observed in the lens and

cornea was considered non-specific, as it is also observed with pre-

immune serum. At 5 dpf, stronger, specific staining with the Pim1

antibody is observed throughout the neuroretina. By in situ

hybridization, pim1 exhibits increased expression in the GCL and

INL layers from 2 to 5 dpf (Figure 7B). Pim1 was also expressed

strongly in the ciliary marginal zone (Figure 7B). Microinjection

into zebrafish embryos of pim1 morpholinos that disrupt splicing of

pim1 (Figure 7C) results in a specific diminishment of the staining

of Pim1 in the retina (Figure 7D). The expression of pim1 RNA

and Pim1 protein are reminiscent of the staining observed with the

other Jak-Stat signaling proteins Socs1, Socs3a, and Stat3, and

consistent with the microarray and qRT-PCR. Overall, these

results indicate enhanced expression of Pim1 throughout the

zebrafish neuroretina from 3–5 dpf..

Inhibition of Pim kinase specifically suppresses visual
function in zebrafish larvae

To investigate the role of Pim1 in the retina, we performed loss

of function experiments. Initially, we treated larvae from 3–5 dpf

(‘‘chronic’’) with two different Pim1 inhibitors (Figure 6 C,D). No

gross morphological defects were observed aside from occasional

un-inflated swim bladders at the highest concentrations, a

phenotype not observed with subsequent ‘‘acute’’ inhibitor

treatments for 1 hour only at 5 dpf (Figure 8A). The histology of

the eye was also largely unaffected (Figure 8E) except for a slight

reduction in eye diameter and in the average number of primary

branches of hyaloid vasculature (Figure 8C–D). We also deter-

mined that concentrations of Pim1 inhibitor 2 or II up to 2000 mM

did not cause lethality or gross morphological defects in zebrafish

(Figure 8A) and that concentration up to 100 mM had no effect on

the touch response, a locomotor response independent of vision

(Figure 9). These experiments indicate that the Pim1 inhibitors are

well tolerated by the larvae and that they do not induce significant

morphological or general locomotor defects.

The role of Pim1 in visual function was then investigated by

assessing loss-of-function effects on the OKR. Knockdown of Pim1

using splice-site blocking morpholinos injected at embryonic stages

results in a significant reduction in the number of saccades at

5 dpf, compared to control morpholino injected larvae (Figure 9A).

In agreement, ‘‘chronic’’ treatment of larvae with Pim1 inhibitors

from 3–5 dpf also results in significant, dose-dependent diminish-

ment of the number of OKR saccades and of the peak VMR

responses to light changes (Figure 9 and 10). As these assays do not

exclusively analyse ocular function, we quantified outer retinal

function to different light flash intensities by ERG (Figure 9B). The

ERG a-wave is produced by photoreceptors and the b-wave

represents neurotransmission from light-activated photoreceptors

to bipolar cells. Larvae treated with Pim1 inhibitor 2 from 3–5 dpf

exhibited a-wave and b-wave amplitudes reduced by ,2–4 fold,

with the larger reductions at higher light intensities.

To determine if ‘‘acute’’ treatment with Pim1 inhibitors could

alter visual function, 5 dpf larvae were treated for only 1 hour

before analysis of the OKR and VMR (Figure 9 and 10). Again,

significant diminishment of the OKR and the VMR peak

responses were observed with Pim1 inhibitor 2 and Pim1 inhibitor

II at concentrations that i) are substantially lower than the

maximum tolerated concentration, ii) which do not affect the

touch locomotor response and iii) that do not affect retinal

morphology. In order to ensure the inhibitor induced reductions

on VMR peaks are vision driven events, VMR on and off peaks

were normalized to pre-on and pre-off activities, respectively. The

normalized peaks represent fold increases in locomotor activity

after light change. Notably, significant reductions in normalized

on and off peaks were observed with Pim1 inhibitors treatments

(Figure S1).

Moreover, reversibility of drug action was confirmed in

zebrafish acutely treated with Pim 1 inhibitor II for 1 hour at

5 dpf (Figure 10M). Treated zebrafish were washed with embryo

medium and the VMR tested after 7–8 hours settling. Peak on and

off light responses after drug removal showed significant improve-

ment from Pim1 inhibitor-treated fish indicating that acute effects

on visual behaviour were not due to drug toxicity. In summary,

perturbation of Pim1 kinase results in specific diminishment of

visual function.

Discussion

Genes differentially expressed in 3–5 dpf zebrafish eyes were

profiled to identify potential novel regulators of visual function

maturation. Interestingly, genes comprising the Jak-Stat signalling

pathway were found to be most enriched from 3 to 5 dpf. Janus

kinase (JAK) is a key regulator of interferon and cytokine signalling

[9]. Receptor binding results in downstream activation of signal

transducer and activator of transcription (STAT) factors, which

regulates target gene transcription in the nucleus. This study

focussed on a downstream target of the Jak-Stat pathway, the

Pim1 oncogene, as its role in visual function had not previously

been appreciated. Pim genes encode serine threonine kinases,

which are important downstream effectors in cytokine signalling

[10]. They have been shown to play a role in promoting cell

proliferation and in inhibiting apoptosis [51]. However, our study

suggests a novel role for Pim1 in visual function, independent of

these processes.

In Drosophila, the Jak-Stat pathway regulates various develop-

mental processes including embryogenesis, hematopoiesis, organ

development and sex determination [43]. The Jak homolog Hop

and the Stat homolog STAT92E are known to mediate Drosophila

eye imaginal cell growth and differentiation [52,53]. SOCS36E,

dPIAS and dBRWD3, regulators of Jak-Stat signalling, are also

Figure 9. Pim1 inhibition results in a reduced visual response at 5 dpf. (A) The OKR of Pim1 MO injected fish is significantly reduced. Larvae
were treated with increasing concentrations of Pim1 inhibitor 2 or Pim1 inhibitor II ranging from 1 to 100 mM. Pim1 inhibitors were dissolved in 0.1%
DMSO at all concentrations except the 100 mM concentration which was dissolved in 1% DMSO. (B) The ERG a-wave and b-wave are significantly
decreased in 100 mM Pim1 inhibitor 2 treated fish. (C–J), significant reduction of OKR saccades in zebrafish treated from 3–5 dpf (‘‘chronic’’) or treated
for 1 hour at 5 dpf (‘‘acute’’) using Pim1 inhibitors. The locomotor touch response of fish treated with Pim1 inhibitors is unaltered. p-values were
calculated using Student’s t test. *: p,0.05. **: p,0.01. ***: p,0.001.
doi:10.1371/journal.pone.0052177.g009
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essential in determining Drosophila eye size and visual function [54].

Moreover, the Jak-Stat pathway interplays with Hh, mTOR and

Notch pathways to form a gene regulatory network for Drosophila

eye development [54]. In vertebrates, Jak-Stat signalling is more

complicated due to complex signalling inputs, gene redundancy

and networking [44]. In the eye, ciliary neurotrophic factor

(CNTF) is a potent cytokine that activates Jak-Stat to regulate

vertebrate eye development [55,56]. CNTF binding to its receptor

gp130 activates JAK protein kinases (Jak1, Jak2 and Tyk2) and

subsequent phosphorylation of latent transcription factors STAT1

and STAT3. During mouse embryonic eye development, Jak2,

Tyk2, STAT1 and STAT3 exhibit strong expression in the

developing ganglion cell layer and inner plexiform layer [57].

Later at postnatal stages, these components are localized to the

ganglion cell layer, the inner nuclear layer, and the two plexiform

layers. Other Jak-Stat components are also known to regulate eye

development. SOCS3, the negative feedback modulator of

STAT3, is required for rhodopsin expression and rod photore-

ceptor cell differentiation [45]. SOCS3a is required for optic nerve

regeneration [58]. While there is evidence that components of the

Jak-Stat pathway are expressed and play various important roles in

the developing eye, the expression and function of many other Jak-

Stat pathway genes in visual development is largely unknown.

Here, we quantify visual behavior responses and confirm that

zebrafish show significant maturation of visual function between 2

and 5 dpf. This gain of visual function appears independent of

gross morphological changes to the eye, as the patterned retina,

lens and cornea are already present by 3 dpf. Microarray and

qRT-PCR demonstrate that many Jak-Stat genes are significantly

enriched in the vertebrate eye as visual function matures. This

includes jak, stat and socs, and many downstream genes including

ptpn6, cish, pim1, pim2, spry4, myca and bcl21l1. Because the

Affymetrix GeneChip only represents a subset of zebrtafish genes,

other Jak-Stat genes are expected to be differentially expressed

during visual function development. For example, Stat3 is not

targeted by the GeneChip probes, but at the protein level it

exhibits higher ocular expression at 5 and 7 dpf (Figure 5).

Furthermore, immunostaining confirms Socs1, Socs3a, Stat3 and

Pim1 are expressed at low levels in the early developing retina but

have stronger and broader expressed in the laminated retina. Stat3

and Socs3 have similar expression patterns in the embryonic

zebrafish eye compared to mouse [45,59]. This indicates an

evolutionary conserved pattern of expression of the Jak-Stat

signaling pathway during eye development.

It was intriguing that enhanced expression in the eye, of an

ortholog of the PIM1 oncogene, correlated with gain of visual

function. PIM kinases are associated with various human cancers,

including prostate, oral, colon, pancreatic and lymphoma [60–63].

Pim1–3 gene paralogs encode serine threonine kinases, which are

important downstream effectors in cytokine signalling [10]. STAT

transcription factors can directly bind to pim promoter sequences

and PIM kinases can negatively regulate the Jak-Stat pathway by

binding to the negative regulator SOCS proteins [47,64–66].

Although initially linked primarily with haematopoiesis, Eichmann

et al. previously suggested novel functions of Pim kinases outside

the haematopoietic system, particularly in epithelia and the CNS

[10]. During early mouse development, pim genes have overlap-

ping or complementary expression in the hematopoietic system,

epithelia and central nervous system [10]. Of particular relevance

to this study is the reported expression of pim1 in the neural retina

of embryonic mice [10]. However, an association of Pim proteins

with visual function was not previously reported.

Overall, our data supports a novel role for Pim1 kinase in visual

function. At stages post-retinogenesis, pan-retinal staining of Pim1

is enhanced in larval zebrafish as vision matures. In addition, Pim1

inhibitors or Pim1 knockdown results in diminished visual

behaviour. The diminished OKR or VMR could result from

defects in the eye, brain or musculature. However, the normal

locomotor response to a tactile object indicates that non-visual

locomotor responses and the musculature are unaffected, whereas

the abnormal ERG indicates that the retina is affected. Defects in

visual function could also arise from toxic effects to the fish or

morphological abnormalities. However, the concentrations of

Pim1 inhibitor that produce visual behaviour defects are at least

10–1000 fold lower than the maximum tolerated concentrations

and no significant morphological defects were observed in the eye.

When treated from 3–5 dpf, there is small effect of Pim inhibitors

on primary hyaloid vessel branch number. This phenotype is

unlikely to account for the defects in visual behaviour associated

with Pim1 inhibition, because 1 hour treatment, which does not

affect hyaloid branch number, can still reduce visual behaviour. In

addition, other studies demonstrate that a reduced number of

primary hyaloid vessels did not result in visual behaviour or retinal

function defects [34]. Finally, removal of the Pim1 inhibitors

results in almost fully restored visual behaviour after 8 hours,

supporting a specific action of the drugs.

Our findings highlight the need for further research into the role

of Pim1 in visual function in normal and diseased situations. We

speculate that loss of Pim1 results in signalling defects in the retina

that perturb visual function without affecting retinal morphology.

Disruption of visual function in the retina does not have to occur

by degenerative mechanisms and can result from deficits in

chromophore levels, phototransduction or synaptic transmission.

For example, a similar perturbation of visual function has

previously been reported upon Jak-Stat activation in the retina

following exogenous CNTF treatment [67]. Indeed other kinases

are known to regulate visual function; rhodopsin kinase regulates

phototransduction, phosphatidylinositol-3-kinase-like kinase

(PIKK), cAMP-dependent protein kinase, and the tyrosine kinase

insulin receptor regulate photoreceptor synaptic transmission and

cAMP-dependent protein, PKC, CaM Kinase, MAP kinase and

src family kinases modulate synaptic exocytosis [68–70]. Targets of

Pim1 kinase include transcription regulators and proteins involv-

ing in cell cycle progression and apoptosis [71]. Two Pim1 targets,

Socs1 [66] and Myca [72], are shown in this study to be up-

regulated from 3 to 5 dpf during vision function maturation

(Figure 3). However the mechanism of disturbance of visual

function by Pim1 inhibition still needs further investigation. In

summary, we uncover correlations between expression levels of

Jak-Stat pathway genes with maturation of visual function, and

demonstrate an unforeseen role of the Pim1 kinase in visual

function.

Figure 10. Pim1 inhibition results in reversible reduction of VMR on and off peaks. Zebrafish (n = 36 to 60) were treated from 3–5 dpf
(‘‘chronic’’) or at 5 dpf for 1 hour (‘‘acute’’) using Pim1 inhibitors. (A–L) The ON and OFF response are significantly reduced in zebrafish treated using
Pim1 inhibitors compared to zebrafish treated with DMSO control. p-values were calculated using Wilcoxon rank sum test with Bonferroni correction
for multiple testing. *: p,0.05, **: p,0.01. (M) After 1 hour Pim1 inhibitor II treatment at 5 dpf, zebrafish larvae were washed with embryo medium
and settled for 7–8 hours before the VMR was re-tested. After removal of Pim1 inhibitor II, zebrafish showed significantly recovered ON and OFF
responses. p-values were calculated using Wilcoxon rank sum test. *: p,0.1. **: p,0.01.
doi:10.1371/journal.pone.0052177.g010
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