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Abstract
High saturated fat (HF-S) diets increase intramyocellular lipid, an effect ameliorated by

omega-3 fatty acids in vitro and in vivo, though little is known about sex- and muscle fiber

type-specific effects. We compared effects of standard chow, HF-S, and 7.5% HF-S re-

placed with fish oil (HF-FO) diets on the metabolic profile and lipid metabolism gene and

protein content in red (soleus) and white (extensor digitorum longus) muscles of male and

female C57BL/6 mice (n = 9-12/group). Weight gain was similar in HF-S- and HF-FO-fed

groups. HF-S feeding increased mesenteric fat mass and lipid marker, Oil Red O, in red and

mixed muscle; HF-FO increased interscapular brown fat mass. Compared to chow, HF-S

and HF-FO increased expression of genes regulating triacylglycerol synthesis and fatty

acid transport, HF-S suppressed genes and proteins regulating fatty acid oxidation, where-

as HF-FO increased oxidative genes, proteins and enzymes and lipolytic gene content,

whilst suppressing lipogenic genes. In comparison to HF-S, HF-FO further increased fat

transporters, markers of fatty acid oxidation and mitochondrial content, and reduced lipo-

genic genes. No diet-by-sex interactions were observed. Neither diet influenced fiber type

composition. However, some interactions between muscle type and diet were observed.

HF-S induced changes in triacylglycerol synthesis and lipogenic genes in red, but not white,

muscle, and mitochondrial biogenesis and oxidative genes were suppressed by HF-S and

increased by HF-FO in red muscle only. In conclusion, HF-S feeding promotes lipid storage

in red muscle, an effect abrogated by the fish oil, which increases mediators of lipolysis, oxi-

dation and thermogenesis while inhibiting lipogenic genes. Greater storage and synthesis,

and lower oxidative genes in red, but not white, muscle likely contribute to lipid accretion en-

countered in red muscle. Despite several gender-dimorphic genes, both sexes exhibited a

similar HF-S-induced metabolic and gene expression profile; likewise fish oil was similarly

protective in both sexes.
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Introduction
Diets rich in saturated fat (HF-S), particularly when consumed ad libitum, increase adiposity
in rodents [1, 2]. Additionally, HF-S diets increase triacylglycerol deposition in ectopic stores,
including the liver and skeletal muscle in both mice [3–5] and humans [6–9]. We have previ-
ously reported [10] that in vitro exposure to palmitate, a saturated fatty acid, increases triacyl-
glycerol content in rat L6 myotubes. In healthy lean humans, acute exposure to a HF-S diet
increases fatty acid oxidation [11, 12]. This adaptive increase is impaired in obese humans [11,
13, 14] and has been linked to increased intramyocellular triacylglycerol storage [4, 5, 15, 16],
although increased fatty acid uptake [17, 18] and reduced triacylglycerol hydrolysis [19, 20]
may also be involved.

Dietary supplementation with fish oil has multiple, well-established health benefits, includ-
ing reducing circulating triacylglycerol and an anti-inflammatory action [21, 22]. In mice, re-
placing 1.5% of a corn oil based high fat diet (35% lipid; n-6 PUFA-rich) with docosahexaenoic
acid (DHA) derivative, α-ethyl DHA ethyl ester, reduced intramyocellular triacylglycerol by
more than half [23] and likewise, incorporating 3.6% eicosapentaenoic acid (EPA) ethyl ester
into a 45% high fat diet elicited intramyocellular triacylglycerol lowering effects. Mechanistically
several pathways may be involved. A high fat diet (35.5% energy from fat) of predominantly
fish oil increased muscle fatty acid transporter, Fat/cd36, mRNA in mice, compared to those
consuming an isocaloric lard-based high fat diet [24]. Supplementing a cafeteria high fat diet
(62% energy from fat (45% saturated fat, no EPA and DHA)) with EPA ethyl ester (1g/kg), re-
duced acetyl CoA carboxylase β (Acc-β) mRNA content in rat muscle, which may simulta-
neously result in suppression of lipogenesis and enhanced β-oxidation in myocytes [25]. While
replacing 15% of fat in high fat diet (35.2% fat (mainly n-6 PUFA-rich corn oil)) with n-3
PUFA concentrate (3.29:1 DHA:EPA) in mice promoted efficient β-oxidation of fatty acids
within skeletal muscle mitochondria [26]. Whether n-3 PUFAs from natural fish oil abrogate
intramyocellular lipid accumulation in a HF-S setting is unclear and the pathways involved re-
quire clarification. Additionally, the vast majority of past studies have examined only the effect
of dietary n-3 PUFA supplementation in either white glycolytic skeletal muscles [24] or muscles
of mixed fiber type [25–30] that are reliant on glucose or a fuel mixture as their main substrate
[31]. Red fibers are oxidative and rely heavily on lipids as fuel [31–33]. The extent to which the
addition of n-3 PUFAs to a HF-S diet modifies lipid metabolism in these red fibers remains to
be determined, although increased Cpt1b and Ucp3mRNA have been reported in the mouse so-
leus in response to EPA ethyl ester enrichment of a high fat diet [34]. Past studies were also con-
ducted solely in male rodents and thus cannot answer whether there are sex-related differences
in this response. Especially as in rats [35, 36], high fat-fed males are reported to be less efficient
at promoting adipose tissue deposition, are less proficient at amplifying muscle oxidative capac-
ity and instead exhibit greater hepatic triacylglycerol content and fatty acid oxidation rate,
when compared to high fat-fed females [36]. The aim of this study was therefore to determine
the differential effects of feeding a saturated fat-rich diet (HF-S) or a HF-S diet with 7.5% of
fatty acids replaced with n-3 PUFAs from fish oil (HF-FO) in male and female mice on body
composition and pathways of skeletal muscle lipid metabolism in both “white” fast-twitch gly-
colytic and oxidative-glycolytic and “red” slow-twitch oxidative muscles, by quantifying the his-
tological changes in muscle lipid content and oxidative capacity (SDH, NADH-TR) and the
mRNA content of key genes involved in fatty acid transport (Fat/cd36, Fabppm, Fatp1, Fatp4), li-
pogenesis and triacylglycerol storage and hydrolysis (Srebf1, Insig1, Dgat1, Scd1,Hsl), and fatty
acid disposal (Pdk4, Ampkα 1, Ampkα 2, Acc-β, Cpt1b, Ucp3, Pgc1α, Pparα) using real time
quantitative PCR and the abundance of key proteins involved in mitochondrial oxidation by
Western blot analysis (PGC1α, PPARα, CPT1b, OXPHOS Complex I-V).
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Materials and Methods

Ethics Statement
All procedures were approved by the University of Adelaide and Institute of Medical and Vet-
erinary Science Animal Ethics Committees, and University of Adelaide guidelines for the use
and care of laboratory animals were followed (approval number: M-027–2007). All animals
were provided with environmental enrichment throughout the dietary intervention and all
procedures thereafter were performed under isoflurane-induced anaesthesia to
minimise suffering.

Animals and diets
Specific pathogen-free 6-week-old male and female C57BL/6J mice were purchased from Labo-
ratory Animal Services, University of Adelaide (Adelaide, Australia). Mice were housed in indi-
vidual cages in an animal holding room with fixed photoperiod (12:12hr light/dark cycle) and
temperature (24.5°C). On arrival, mice underwent an acclimatization period of 2 wks, during
which they were provided standard rodent chow diet and water ad libitum. Following the accli-
matization period, mice were randomly assigned to one of three diets, fed either a standard
chow ((control (CON); AIN-93G), 16.1 MJ/kg, 15.91% energy from fat, 25.08% energy from
protein, 58.48% energy from carbohydrate), high saturated fat ((HF-S; SF07–066), 21.8 MJ/kg,
59.60% energy from fat (rich in saturated fat), 18.53% energy from protein, 21.20% energy
from carbohydrate), or HF-S fish oil enriched ((HF-FO; SF07–067), 21.8 MJ/kg, 59.60% energy
from fat (7.5% of HF-S replaced with n-3 PUFAs (% as fed)), 18.53% energy from protein,
21.27% energy from carbohydrate) diet. Diets were manufactured by Specialty Feeds Pty Ltd
(Glen Forrest, Australia) and n-3 PUFAs in the HF-FO diet were provided as HiDHA 25N
tuna oil (26% DHA, 6% EPA) (kindly donated by Nu-mega Ingredients Pty Ltd (Nathan, Aus-
tralia)). Both high fat diets were stored at -20°C, whilst the HF-FO diet was also stored in ali-
quots under nitrogen gas to avoid oxidation. Mice were maintained on their respective diets for
a period of 11 or 14 wks, see Experimental Protocols and Tissue Collection, during which food
and water were provided daily ad libitum.

Experimental Protocols and Tissue Collection
Cohort 1: Mice were maintained on their respective diets for 14 wks (± 4 d). Body weight (g)
was measured thrice weekly and at the time points of arrival (6 wks-of-age) and post-mortem
(20 wks-of-age) (n = CON(male) = 10, CON(female) = 12, HF-S(male) = 11, HF-S(female) =
11, HF-FO(male) = 9, HF-FO(female) = 11). Body weight upon arrival (Table 1; P = 0.16
(CON vs. HF-S), P = 1.0 (CON vs. HF-FO), P = 0.99 (HF-S vs. HF-FO) and during the acclima-
tization period (data not shown; P = 0.24 (CON vs. HF-S), P = 0.42 (CON vs. HF-FO), P = 1.0
(HF-S vs. HF-FO)) was similar in all dietary groups. Food intake was measured daily, from
which cumulative energy intake (MJ) was calculated.

Following 14 wks diet, whilst in the fed-state, mice underwent non-recovery surgery for the
excision of skeletal muscle. Surgeries were scheduled and performed to minimise temporal
variation. Anaesthesia was induced using a mixture of oxygen (0.5 L/min), nitrous oxide
(0.5 L/min) and 2% isoflurane (Forthane, Abbott Australasia Pty Ltd (Kurnell, Australia)) and
maintained using 1.5% isoflurane, 0.4 L/min oxygen and 0.4 L/min nitrous oxide. The whole
“white” extensor digitorum longus (EDL) and “red” soleus (SOL) muscles were then rapidly
dissected, snap frozen in liquid nitrogen and stored under liquid nitrogen vapour phase storage
until subsequent analyses of mRNA content and protein abundance. Following skeletal muscle
surgery, a cardiac puncture was performed and blood was collected in Microvette CB300 tubes
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treated with EDTA dipotassium salt (Sarstedt (Nümbrecht, Europe)). Post-mortem, adipose
tissue from the pooled posterior and anterior subcutaneous (dorso-lumbar, inguinal, gluteal,
white interscapular, subscapular, axillo-toracic and superficial cervical depots); visceral mesen-
teric; pooled perirenal and retroperitoneal; pooled brown deep cervical and interscapular; and
perigonadal (periovariac, females; epididymal, males) depots was dissected, snap frozen in liq-
uid nitrogen and evaluated for weight. Adipose tissue depot weights are expressed relative to
body weight, to allow comparison across sexes.

Cohort 2: Mice were maintained on their respective diets for 11 wks (± 7 d). Following 11
wks diet, whilst in the fed-state, mice underwent non-recovery surgery for the excision of skele-
tal muscle, with anaesthesia induced and maintained as described above. The whole EDL (un-
divided from the tibialis muscle), and soleus (undivided from the gastrocnemius and plantaris
muscles) were then rapidly dissected, followed by excision of the whole undivided quadriceps
muscles. Muscle groups were embedded at resting tension in Tissue-Tek OCT (Sakura Finetek
Co Ltd (Tokyo, Japan)) and gently frozen. OCT-embedded muscles were stored under liquid
nitrogen vapor phase storage until subsequent histological analyses of muscle lipid, fiber type
composition and oxidative capacity.

Plasma Biochemistry
Plasma glucose and triacylglycerol (mM) concentrations were measured in duplicate using
Gluco-quant Glucose/HK and TG GPO-PAP kits (Roche Diagnostics (Mannheim, Germany)),
respectively, on the COBAS Bio automated analysis system (Roche Diagnostics Australia Pty
Ltd (Castle Hill, Australia)). Plasma insulin concentrations (pM) were measured by DRG

Table 1. Body weight-related and plasma biochemical parameters.

Male Female Stat

CON HF-S HF-FO CON HF-S HF-FO

Start Weight (g) † 22.0 ±0.6 22.5 ±0.2 22.6 ±0.3 17.9 ±0.2 18.9 ±0.3 18.3 ±0.3 S

Final Weight (g) † 28.0 ±0.8 31.1 ±0.7* 31.8 ±0.9* 21.9 ±0.3 26.0 ±0.8* 27.6 ±0.6* D, S

Weight Gain (g) † 6.05 ±0.8 8.63 ±0.6* 9.25 ±0.9* 3.99 ±0.3 7.14 ±0.7* 9.25 ±0.6* D, S

Energy Intake (MJ) 4.36 ±0.1 5.45 ±0.1§ 5.08 ±0.2§ 3.94 ±0.1 5.50 ±0.2§ 5.49 ±0.1§ DxS

Pooled AT (g) 2.48 ±0.2 3.00 ±0.3* 3.19 ±0.5* 1.64 ±0.1 2.64 ±0.4* 2.92 ±0.3* D

Subcutaneous AT (mg/g) 35.0 ±2.4 40.5 ±4.8 41.5 ±6.3 34.0 ±2.1 44.9 ±5.4 47.3 ±6.0 N/S

Mesenteric AT (mg/g) 20.0 ±1.0 18.7 ±0.6 15.6 ±1.1 # 17.9 ±0.6 21.7 ±2.2 18.4 ±0.8 # D

Perirenal AT† (mg/g) 8.2 ±0.7 9.3 ±1.1 11.5 ±2.0* 5.9 ±0.4 7.8 ±1.0 9.9 ±1.0 * D, S

Brown AT (mg/g) 4.7 ±0.4 3.8 ±0.3 5.2 ±0.5 # 4.4 ±0.4 3.8 ±0.2 5.5 ±0.4 # D

Perigonadal AT (mg/g) 20.0 ±1.3 22.3 ±2.4 23.8 ±4.0 13.4 ±1.4 18.6 ±2.3 22.4 ±2.9* D

Plasma Glucose (mM) † 8.04 ±0.6 7.98 ± 0.5 6.84 ±0.7 7.34 ±0.6 5.96 ±0.5 6.64 ±0.5 S

Plasma Insulin (pM) 63.8 ±12 109.7 ±29 59.7 ±14 71.9 ±14 114.2 ±26 70.7 ±18 N/S

Plasma TG (mM) 0.83 ±0.1 0.62 ±0.0 0.53±0.1*# 0.72 ±0.1 0.79 ±0.1 0.55±0.1*# D

Measured in male and female mice fed control (CON), high saturated fat (HF-S) and high fat fish oil enriched (HF-FO) diets for 14 wks (Cohort 1).

Results are mean ± SEM of 9–12 animals per group. Adipose tissue, AT; TG, triacylglycerol.

Statistics: Effect of diet (D):

*P�0.05, vs CON;
#P�0.05, compared to HF-S. Effect of sex (S):
†P�0.05 male vs female. Diet*sex interaction (DxS):
§P�0.05, compared to CON of same gender. N/S, not significant.

doi:10.1371/journal.pone.0117494.t001
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Ultrasensitive Mouse Insulin ELISA (DRG Instruments (Marburg, Germany)) as per
manufacturer’s instructions.

mRNA Expression Analyses using the GenomeLab GeXP Genetic
Analysis System
Total RNA from whole EDL and soleus muscles was isolated using TRIzol reagent (Invitrogen
Australia Pty Ltd (Mount Waverley, Australia)). RNA quality and concentration were evaluat-
ed (NanoDrop 1000 Spectrophotometer, ThermoScientific Inc (Wilmington, USA)). RNA was
treated using DNase I (Invitrogen Australia Pty Ltd). cDNA was generated by reverse tran-
scription according to manufacturer’s instructions (GenomeLab GeXP Genetic Analysis Sys-
tem, Beckman Coulter Inc), resulting in cDNA of gene-specific sequences with a flanking
universal sequence. Forward and reverse primers were designed to amplify a section of the pro-
tein coding sequence and to be positioned in different exons as determined by Entrez Nucleo-
tide (National Center for Biotechnology Information (Bethesda, USA)) and Ensembl
(European Bioinformatics Institute/Wellcome Trust Sanger Institute (Cambridge, United
Kingdom)), respectively. Primers were designed using GenomeLab GeXP eXpress Profiler soft-
ware (ver.10.0 Beckman Coulter Inc (Fullerton, USA)) to generate an amplified product with a
gene fragment length between 137–356 nucleotides and separation size of at least 6 nucleotides.
Finally primer sequences were submitted to BLAST (Basic Local Alignment Search Tool, Na-
tional Center for Biotechnology Information (Bethesda, USA)). A universal sequence was then
added to both forward and reverse designed primer sequences, generating chimeric primers.
Resultant forward and reverse primers (GeneWorks Pty Ltd (Hindmarsh, Australia)) are listed
in table form (Supporting Information—S1 Table). Primers were optimized in singlet and mul-
tiplex reactions, according to manufacturer’s instructions (GenomeLab GeXP Genetic Analysis
System, Beckman Coulter Inc). Multiplex PCR was then performed on the Eppendorf Master-
cycler Gradient (Eppendorf South Pacific Pty Ltd (North Ryde, Australia)). Negative controls
(no template, no reverse transcriptase) were run in parallel. Fluorescently-labeled PCR prod-
ucts were separated, detected, quantified and analyzed in duplicate using the GenomeLab
GeXP Genetic Analysis system and GenomeLab GeXP eXpress Profiler software. Output
mRNA contents were then normalized to the average mRNA content of 3 housekeeping genes,
TATA-binding protein, RNA Polymerase 2c and large ribosomal protein P0.

Protein content analyses by Western Blot
Whole EDL and soleus muscles were weighed and homogenised in ice-cold lysis buffer as de-
scribed previously [37] and protein concentration determined by bicinchoninic acid protein
assay (Pierce Biotechnology (Rockford, USA)). For measuring the abundance of PPARα, oxi-
dative phosphorylation (OXPHOS) complexes I-V, peroxisome proliferative activated receptor
γ coactivator 1α (PGC1α), CPT1b and β-tubulin proteins, 16–20 μg of muscle protein was sub-
jected to SDS-PAGE using precast 10% Bis-Tris gels or 4–12% Bis-Tris gels (Bio-Rad Laborato-
ries Pty Ltd (Gladesville, Australia)) and transferred to PVDF membranes. Membranes were
incubated overnight in primary antibody; PPARα (Abcam (Cambridge, UK)), 1:500; OXPHOS
proteins (MitoSciences (Eugene, USA)), 1:250; PGC1α (Abcam), 1:1000; CPT1b (Alpha Diag-
nostic International Inc (San Antonio, USA)), 1:1000; and β-Tubulin (Cell Signaling Technolo-
gy (Danvers, USA)), 1:2000. Bound primary antibodies were detected with sheep anti-rabbit
(1:2500, Chemicon International (Billerica, USA)) or goat anti-mouse alkaline-phosphatase
linked antibody (1:2000, Millipore (Billerica, USA)). Membranes were developed with chemi-
fluoresence substrate (ECF), scanned by Typhoon Imager (GE Healthcare Bio-Sciences (Rydal-
mere, Australia)) and were quantified using ImageQuant software (Molecular Dynamics).
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Muscle Histology
OCT-embedded muscle groups (the EDL and tibialis group, and the soleus, gastrocnemius and
plantaris group, and the quadriceps muscles group) were cut to 4, 9 or 10 μm thick cross-sec-
tions at -20°C. Sections were stained with haematoxylin and eosin to confirm normal cellular
morphology (data not shown) or with Oil Red O, a marker of intramyocellular lipid content.
Serial sections were stained for myofibrillar myosin adenosine triphosphatase (mATPase), fol-
lowing alkaline (pH 10.4) and acidic (pH 4.1, pH 4.3) preincubations, to evaluate muscle fiber
type [38]. Sections were stained for succinic dehydrogenase (SDH) and NADH tetrazolium re-
ductase (NADH-TR) to confirm muscle fiber type and evaluate oxidative capacity. Following
all staining, slides were scanned using the NanoZoomer Digital Pathology scanner (Hamama-
tsu Photonics K. K. (Hamamatsu City, Japan)). The soleus and EDL muscles were analyzed in
duplicate to determine muscle fiber type and oxidative capacity in predominantly red and
white muscles, respectively, with the same 75 muscle fibers in each scanned image assessed for
all stains. Images were scored whilst blinded to dietary group and sex.

The activity of mATPase was judged on a subjective basis by one observer and muscle fibers
were given a score from 1–5 based on the intensity of staining (1 = light, 2 = light-moderate, 3
= moderate, 4 = moderate-dark, 5 = dark). A defined scheme was used to classify fiber type,
based on scores given to muscle fibers stained for mATPase [38]. Fiber type composition (%)
was calculated as the proportion of each fiber type relative to the total number of fibers scored.

SDH and NADH-TR staining intensity were assessed by mean pixel density using ImageJ
software (ver. 1.42q, National Institute of Health (Bethesda, USA)) from grayscale images man-
ually traced at cell perimeters. The same fibers used to assess the activity of both SDH and
NADH-TR were also used to determine muscle fiber type by mATPase staining, allowing clas-
sification of oxidative activity respective to fiber type. Cell area of each muscle fiber type was
also assessed. The area of each fiber type was calculated relative to the total area measured, pro-
viding the relative area occupied by each muscle fiber type within the EDL and soleus muscles.
Results are presented as the mean cross-sectional cell area of classified fibers and the % area oc-
cupied by each muscle fiber type.

Statistical Analysis
All data are presented as mean ± SEM. Two-way ANOVA, with pairwise comparisons (Bonfer-
roni post-hoc), was used to determine the effect of diet (CON, HF-S, HF-FO), muscle (EDL, so-
leus), sex (male, female) and their interaction on parameters. In Cohort 2 analyses, as there was
no significant interaction of sex and diet, to enhance statistical power, data from male (n = 3
per group) and female (n = 2–3 per group) mice were combined. One-way ANOVAs, with
Bonferroni post-hoc analysis, were therefore used to determine the effect of diet in the EDL
and soleus muscles on muscle fiber type-specific parameters. Statistics were performed using
Statistical Package for Social Scientists ver.17.0.0 (SPSS Inc (Chicago, USA)). P<0.05 was con-
sidered statistically significant.

Results

Effect of dietary fat composition on adipose tissue distribution and
plasma biochemistry (Table 1)
Compared to CON, HF-S- and HF-FO-fed mice gained more weight (effect of diet: P�0.001),
but there were no differences between the two high fat diet groups. Irrespective of diet, males
gained more weight than females (effect of sex: P�0.05). Compared to CON, cumulative ener-
gy intake was higher in the two high fat diet groups (effect of diet: P<0.005), but there was no
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difference between high fat diets and no effect of sex. Compared to CON, HF-S and HF-FO in-
creased pooled adipose tissue mass similarly, in both sexes (effect of diet: P�0.05, P�0.01).
However, fat storage in distinct adipose tissue depots was affected by dietary fatty acid compo-
sition. Compared to CON, HF-FO increased pooled perirenal and retroperitoneal adipose tis-
sue (effect of diet: P�0.005), irrespective of sex, and gonadal periovariac adipose tissue (effect
of diet: P�0.05) in female mice. In males, gonadal depot, epididymal adipose tissue, was un-
changed by diet; similarly subcutaneous fat mass was not diet-dependent. Compared to HF-S,
HF-FO decreased mesenteric adipose tissue (effect of diet: P�0.05) and increased brown adi-
pose tissue (effect of diet: P�0.05), in both sexes. Other than higher pooled perirenal and retro-
peritoneal adipose tissue in males (effect of sex: P�0.05), the adipose tissue depots measured
were not sexually dimorphic. Compared to CON and HF-S, HF-FO lowered plasma triacylgly-
cerol (effect of diet: P�0.005, P�0.05), irrespective of sex. Neither high fat diet influenced plas-
ma glucose nor insulin concentrations, irrespective of sex. Irrespective of diet, glucose levels
were higher in males than females (effect of sex: P�0.05).

Effect of dietary fat composition on skeletal muscle lipid content in whole
muscle and muscle fiber type distribution (Fig. 1)
Increased Oil Red O staining, a marker of intramyocellular lipid, was apparent in soleus (pre-
dominately red) and quadriceps (mixed fiber type) of HF-S, but not CON and HF-FO, mice
(Fig. 1A). Neither high fat diet influenced Oil Red O staining in the EDL (predominantly white
muscle). Percentage muscle fiber type composition in the EDL and soleus muscles was not
influenced by diet (Fig. 1B), nor was the cross-sectional area of each muscle fiber type (data not
shown).

Effect of dietary fat composition on muscle fatty acid transporter mRNA
content (Table 2)
Compared to CON, both high fat diets increased Fat/cd36 and Fatp1mRNA (effect of diet:
Fat/Cd36: P�0.001; Fatp1: HF-S P�0.005; HF-FO P�0.001), but HF-FO alone increased Fatp4
mRNA (effect of diet: P�0.02), irrespective of muscle type. Compared to HF-S, HF-FO in-
creased Fat/Cd36mRNA (effect of diet: P�0.001), irrespective of muscle type. All fatty acid
transporters exhibited greater mRNA content in the soleus muscle (effect of muscle fibre type:
P�0.001). Except for higher Fatp1mRNA in males compared to females in the EDL only
(muscle�sex interaction: P�0.001), there were no other sex differences in fatty acid transporter
mRNA content.

Effect of dietary fat composition on the mRNA content of genes
influencing fatty acid storage and lipogenesis (Table 3)
Compared to CON, HF-S increased Srebf1 and Insig1mRNAs (effect of diet: P�0.02), irrespec-
tive of muscle fiber type, and increased Dgat1 and decreased Scd1mRNA in the soleus muscle
alone (diet�muscle interaction: P�0.05; P�0.005). Compared to CON, HF-FO increased
Dgat1mRNA in both muscles (diet�muscle interaction: P�0.001). Compared to both CON
and HF-S, HF-FO decreased Scd1mRNA in both muscles (diet�muscle interaction: P�0.02)
and increasedHslmRNA (effect of diet: P�0.001, P�0.05), irrespective of fiber type. Com-
pared to HF-S alone, HF-FO lowered the mRNA content of Insig1, irrespective of muscle type
(effect of diet: P�0.001) and increased Dgat1mRNA in the soleus muscle (diet�muscle interac-
tion: P�0.001).
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Fig 1. Muscle Lipid Content and Fiber Type Composition. (A) Oil Red O staining, a marker of intramyocellular lipid, of the whole extensor digitorum
longus (EDL), soleus (SOL) and quadriceps (rectus femoris (RECT FEM), vastus lateralis (VAST LAT), vastus intermedius (VAST INT) and vastus medialis
(VASTMED)) muscles and (B) muscle fiber type composition (%) of the EDL and SOLmuscles of mice fed a control (CON), high saturated fat (HF-S) or high
fat fish oil enriched (HF-FO) diet for 11 wks (Cohort 2). Scale bars represent 100 μm.

doi:10.1371/journal.pone.0117494.g001
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Table 2. Fatty acid transporter mRNA content.

Male Female Stat

CON HF-S HF-FO CON HF-S HF-FO

Fat/Cd36 EDL 100 ± 6 116 ± 8* 133 ± 5*# 95 ± 7 105 ± 5* 137 ± 7*# D, M

SOL+ 100 ± 3 121 ± 4* 146 ± 7*# 94 ± 5 115 ± 6* 139 ± 7*#

Fabppm EDL 100 ± 3 107 ± 4 100 ± 3 106 ± 8 98 ± 4 107 ± 5 M

SOL+ 100 ± 3 96 ± 2 110 ± 5 101 ± 6 100 ± 7 113 ± 8

Fatp1 EDL‡ 100 ± 8 137 ± 8* 145 ± 9* 81 ± 10 102 ± 7* 113 ± 13* D, MxS

SOL+ 100 ± 6 114 ± 8* 129 ± 6* 93 ± 9 112 ± 12* 141 ± 9*

Fatp4 EDL 100 ± 6 99 ± 9 119 ± 13* 107 ± 12 93 ± 7 108 ± 8* D, M

SOL+ 100 ± 5 128 ± 10 150 ± 6* 117 ± 12 142 ± 20 142 ± 14*

Fatty acid translocase (Fat/Cd36), Fatty acid binding protein (Fabppm) and Fatty acid transport proteins 1 (Fatp1) and 4 (Fatp4) in extensor digitorum

longus (EDL) and soleus (SOL) muscles of male and female mice fed control (CON), high saturated fat (HF-S) or high fat fish oil enriched (HF-FO) diets

for 14 wks (Cohort 1).

mRNA contents are expressed as a percentage of the value of male animals under CON diet. Results are mean ± SEM of 9–12 animals per group.

Statistics: Two-way ANOVA: Effect of diet (D):

*P�0.05, vs CON;
#P�0.05, compared to HF-S. Effect of muscle type (M):
+P�0.05 EDL vs SOL. Muscle*sex interaction (MxS):
‡P�0.05, male vs female (EDL).

doi:10.1371/journal.pone.0117494.t002

Table 3. Lipogenesis, triacylglcerol synthesis and storage genes mRNA content.

Male Female Stat

CON HF-S HF-FO CON HF-S HF-FO

Srebf1 EDL† 100 ± 5 143 ± 10* 104 ± 11 78 ± 8 103 ± 8* 104 ± 9 D, MxS

SOL 100 ± 10+ 99 ± 11*+ 92 ± 16+ 90 ± 11 108 ± 13* 141 ± 27

Insig1 EDL 100 ± 8 128 ± 9* 89 ± 9# 109 ± 15 97 ± 5* 81 ± 5# D

SOL 100 ± 8 147 ± 10* 104 ± 9# 112 ± 12 148 ± 18* 107 ± 16#

Dgat1‡ EDL 100 ± 15 167 ± 23 197 ± 41* 113 ± 19 178 ± 29 209 ± 22* S, DxM

SOL 100 ± 15 162 ± 17*^ 224 ± 39*#^ 117 ± 16 197 ± 34*^ 300 ± 33*#^

Scd1 EDL 100 ± 8 86 ± 8 56 ± 3*# 109 ± 17 77 ± 4 84 ± 7*# DxMMxS

SOL† 100 ± 11^ 84 ± 6*^ 32 ± 2*# 149 ± 13^ 110 ± 19*^ 40 ± 5*#

Hsl EDL 100 ± 7 128 ± 8 142 ± 14*# 103 ± 12 117 ± 12 135 ± 11*# D, M

SOL+ 100 ± 7 117 ± 7 144 ± 13*# 107 ± 12 124 ± 14 150 ± 13*#

Sterol regulatory element binding transcription factor 1 (Srebf1), insulin induced gene 1 (Insig1), diacylglycerol acyltransferase 1 (Dgat1), stearoyl-

Coenzyme A desaturase 1 (Scd1) and hormone sensitive lipase (Hsl) in extensor digitorum longus (EDL) and soleus (SOL) muscles of male and female

mice fed control (CON), high saturated fat (HF-S) or high fat fish oil enriched (HF-FO) diets for 14 wks (Cohort 1).

mRNA contents are expressed as a percentage of the value of male animals under CON diet. Results are mean ± SEM of 9–12 animals per group.

Statistics: Two-way ANOVA: Effect of diet (D):

*P�0.05, vs CON;
#P�0.05, compared to HF-S. Effect of muscle type (M):
+P�0.05 EDL vs SOL. Effect of sex (S):
‡P�0.05, male vs female. Muscle*sex interaction (MxS):
†P�0.05, male vs female (of same muscle). Diet*muscle (DxM):

^P�0.05, EDL vs SOL (of same diet).

doi:10.1371/journal.pone.0117494.t003

Dietary Fatty Acids Dictate Muscle Lipid Metabolism in Mice

PLOS ONE | DOI:10.1371/journal.pone.0117494 February 6, 2015 9 / 19



mRNA contents of genes involved in lipogenesis, lipolysis and triacylglycerol metabolism
were mostly higher in the soleus than the EDL, but this was sex- and diet-dependent. Srebf1
(male mice), Hsl (irrespective of diet or sex), Dgat1 (HF-S, HF-FO (diet�sex) and Scd1 (CON,
HF-S (diet�muscle), male and female (sex�muscle)) exhibited greater mRNA in soleus com-
pared to EDL muscle. Sex-dependent effects were observed for Srebf1 (in EDL) which exhibited
greater mRNA in males, and Scd1 (in soleus) and Dgat1 (irrespective of diet or muscle) which
exhibited greater mRNA in females.

Effect of dietary fat composition on fatty acid oxidation gene mRNA
content (Table 4)
Compared to CON, HF-S decreased Pgc1αmRNA in the soleus muscle (diet�muscle interac-
tion: P�0.001) and PparαmRNA in both muscles (effect of diet P�0.05) and increased
Ampkα2mRNA irrespective of muscle fiber type (effect of diet P�0.05). Compared to CON,
HF-FO increased Cpt1b, Ucp3, Pgc1α and Pdk4mRNA in both muscles (diet�muscle interac-
tion: P�0.05; P�0.001; P�0.001; and effect of diet: P�0.001). Compared to HF-S, HF-FO

Table 4. Fatty Acid Utilisation Gene mRNA Content.

Male Female Stat

CON HF-S HF-FO CON HF-S HF-FO

Pdk4 EDL 100 ± 18 167 ± 13* 206 ± 25* 131 ± 27 160 ± 20* 192 ± 19* D, M

SOL+ 100 ± 14 176 ± 5* 234 ± 13* 118 ± 20 204 ± 28* 241 ± 24*

Ampk1 EDL 100 ± 7 97 ± 8 101 ± 8 107 ± 12 97 ± 6 128 ± 11 M

SOL+ 100 ± 7 116 ± 7 118 ± 5 122 ± 8 111 ± 6 110 ± 6

Ampk2 EDL† 100 ± 5 106 ± 3* 91 ± 2# 85 ± 5 94 ± 29* 85 ± 7# D MxS

SOL+ 100 ± 3 103 ± 4* 93 ± 3# 95 ± 5 106 ± 9* 92 ± 5#

Acc- EDL 100 ± 7 110 ± 9 111 ± 10 140 ± 40 104 ± 6 104 ± 12 M

SOL+ 100 ± 8 122 ± 7 139 ± 6 134 ± 28 147 ± 33 154 ± 27

Cpt1b‡ EDL 100 ± 6 94 ± 6 115 ± 4*# 65 ± 5 88 ± 3 104 ± 10*# DxMS

SOL+ 100 ± 4 111 ± 5 146 ± 4*# 85 ± 4 89 ± 10 116 ± 9*#

Pgc1‡ EDL 100 ± 10 88 ± 6 97 ± 5 78 ± 6 79 ± 9 94 ± 13 DxMS

SOL 100 ± 11^ 68 ± 9* 185 ± 33*#^ 87 ± 10^ 44 ± 7* 144 ± 16*#^

Ppar EDL 100 ± 5 84 ± 6* 90 ± 6# 105 ± 15 92 ± 11* 95 ± 12# D, M

SOL+ 100 ± 9 78 ± 7* 102 ± 7# 104 ± 10 87 ± 6* 100 ± 8#

Ucp3 EDL 100 ± 15 116 ± 7 163 ± 18* 78 ± 14 105 ± 12* 136 ± 13* DxM

SOL 100 ± 19^ 196 ± 16 283 ± 25* 111 ± 27^ 248 ± 34* 255 ± 24*

Pyruvate dehydrogenase kinase 4 (Pdk4), AMP-activated protein kinase catalytic subunits α 1 (Ampkα 1) and α 2 (Ampkα 2), acetyl-CoA carboxylase-

(Acc-), carnitine palmitoyl transferase 1b (Cpt1b), peroxisome proliferative activated receptor coactivator 1 (Pgc1), peroxisome proliferator activator

receptor α (Ppar α) and uncoupling protein 3 (Ucp3) in extensor digitorum longus (EDL) and soleus (SOL) muscles of male and female mice fed control

(CON), high saturated fat (HF-S) or high fat fish oil enriched (HF-FO) diets for 14 wks (Cohort 1).

mRNA contents are expressed as a percentage of the value of male animals under CON diet. Results are mean ± SEM of 9–12 animals per group.

Statistics: Two-way ANOVA: Effect of diet (D):

*P�0.05, vs CON;
#P�0.05, compared to HF-S. Effect of muscle type (M):
+P�0.05 EDL vs SOL. Effect of sex (S):
‡P�0.05, male vs female. Muscle*sex interaction (MxS):
†P�0.05, male vs female (of same muscle). Diet*muscle (DxM):

^P�0.05, EDL vs SOL (of same diet).

doi:10.1371/journal.pone.0117494.t004
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increased Cpt1bmRNA in both muscles (diet�muscle interaction P�0.05), and increased Ppar
(effect of diet P�0.05) and decreased Ampkα2mRNA (effect of diet P�0.05), irrespective of
muscle fiber type. Neither Ampkα 1 nor Acc-βmRNA were changed by diet or sex (data not
shown). There were no diet�sex interactions, however sex differences were observed in the
mRNA content of Cpt1b (effect of sex: P�0.001) and Pgc1α (effect of sex: P�0.005), irrespec-
tive of muscle type, and of Ampkα2 in the EDL only (muscle�sex interaction: P�0.001).

Effect of dietary fat composition on mitochondrial fatty acid oxidative and
OXPHOS protein abundance and staining for oxidative enzymes
Compared to CON, HF-S increased CPT1b protein in the soleus muscle (diet�muscle interac-
tion: P�0.005). Compared to CON, HF-FO increased CPT1b protein in the soleus (diet�mus-
cle interaction: P�0.005) and EDL muscles (diet�muscle interaction: P�0.01). Compared to
HF-S, HF-FO increased CPT1b protein in the EDL muscle (diet�muscle interaction: P�0.001)
(Table 5). PGC1α and PPARα protein contents were unaffected by diet. Except for increased
CPT1b protein in the EDL compared to soleus of female mice only (muscle�sex interaction:
P�0.001), CPT1b, PGC1α and PPARα proteins were not influenced by sex or muscle fibre

Table 5. Abundance of Fatty Acid Utilisation and Oxidative Phosphorylation Proteins.

Male Female Stat

CON HF-S HF-FO CON HF-S HF-FO

CPT1b EDL 100 ± 7 74 ± 9 129 ± 19*# 104 ± 18 91 ± 25 199 ± 48*# DxMMxS

SOL 100 ± 22 183 ± 20* 233 ± 18* 43 ± 5^ 141 ± 13*^ 171 ± 29*^

PGC1α EDL 100 ± 14 107 ± 15 107 ± 16 108 ± 16 119 ± 19 158 ± 41 M

SOL+ 100 ± 8 100 ± 9 111 ± 7 76 ± 8 82 ± 6 102 ± 10

PPARα EDL 100 ± 16 106 ± 15 105 ± 16 99 ± 12 85 ± 7 117 ± 19 M

SOL+ 100 ± 11 78 ± 13 92 ± 16 78 ± 19 80 ± 13 87 ± 20

Complex-I EDL 100 ± 21 77 ± 40 68 ± 21 146 ± 43 107 ± 28 88 ± 30 M

SOL+ 100 ± 18 64 ± 8 33 ± 8 49 ± 10 61 ± 16 28 ± 8

Complex-II EDL 100 ± 10 110 ± 24 120 ± 23 136 ± 32 134 ± 22 168 ± 34 M

SOL+ 100 ± 15 94 ± 8 109 ± 7 88 ± 7 103 ± 10 105 ± 10

Complex-III EDL 100 ± 27 31 ± 7* 68 ± 13# 99 ± 15 35 ± 9* 94 ± 29# DxM

SOL 100 ± 17^ 60 ± 10 53 ± 11^ 55 ± 9^ 60 ± 15 53 ± 11^

Complex-IV EDL 100 ± 17 87 ± 17 100 ± 15 106 ± 12 98 ± 13 114 ± 17 M

SOL+ 100 ± 8 104 ± 2 98 ± 8 74 ± 7 95 ± 6 101 ± 9

Complex-V EDL 100 ± 16 106 ± 16 108 ± 15* 106 ± 11 111 ± 14 153 ± 31* D, M

SOL+ 100 ± 14 145 ± 11 148 ± 11* 69 ± 7 130 ± 8 151 ± 10*

Carnitine palmitoyl transferase 1b (CPT1b), peroxisome proliferative activated receptor γ coactivator 1α (PGC1α), peroxisome proliferator activator

receptor α (PPARα) and mitochondrial Complex-I to—V protein abundance in extensor digitorum longus (EDL) and soleus (SOL) muscles of male and

female mice fed control (CON), high saturated fat (HF-S) or high fat fish oil enriched (HF-FO) diets for 14 wks (Cohort 1).

mRNA contents are expressed as a percentage of the value of male animals under CON diet. Results are mean ± SEM of 6 animals per group. Statistics:

Two-way ANOVA: Effect of diet (D):

*P�0.05, vs CON;
#P�0.05, compared to HF-S. Effect of muscle type (M):
+P�0.05 EDL vs SOL. Effect of sex (S):
‡P�0.05, male vs female. Muscle*sex interaction (MxS):
†P�0.05, male vs female (of same muscle). Diet*muscle (DxM):

^P�0.05, EDL vs SOL (of same group).

doi:10.1371/journal.pone.0117494.t005

Dietary Fatty Acids Dictate Muscle Lipid Metabolism in Mice

PLOS ONE | DOI:10.1371/journal.pone.0117494 February 6, 2015 11 / 19



type. Compared to CON, HF-FO increased OXPHOS ATP synthase (Complex-V) protein, re-
sponsible for the final step of mitochondrial oxidative phosphorylation (OXPHOS) (effect of
diet: P�0.01) (Table 5). Compared to CON and HF-FO, HF-S reduced OXPHOS Complex-III
protein in the EDL muscle alone (diet�muscle interaction: P�0.001, P�0.005). Protein abun-
dance of Complexes-I to-V was not sex-dependent; but was greater in the EDL than soleus
(Complex-I, -II, -IV, -V, effect of muscle fibre type: P�0.001; Complex-III (CON and HF-FO
groups only) diet�muscle interaction: P�0.001). Representative blots are featured in support-
ing information S1 Fig.

Staining of SDH and NADH-TR provides a generalized readout of mitochondrial oxidative
capacity. Compared to CON and HF-S, HF-FO increased soleus muscle SDH staining in a
fiber type-specific manner (with type I and IIC fibers exhibiting darker staining for SDH in
HF-FO muscle compared CON (IIC: P�0.05 I: P = 0.1(trend)) and HF-S (all P�0.05) muscle)
(Fig. 2D, E). Compared to HF-S, HF-FO tended to increased SDH staining in type IIA fibers in
the soleus muscle (P = 0.06). Compared to CON and HF-S, HF-FO increased NADH-TR stain-
ing in soleus type IC fibres (P�0.005, P�0.02, respectively) and compared to HF-S alone, HF-
FO increased NADH-TR staining in the soleus muscle type I and IIC fibers (P�0.05) (Fig. 2F).
Compared to CON, HF-FO also tended to increase SDH and NADH-TR staining in the EDL
muscle in a fiber type-specific manner, with type IID/X and IIA fibers tending to stain darker
for SDH (P = 0.06, P = 0.1, respectively) and for NADH-TR (P = 0.09, P = 0.08, respectively) in
the HF-FO EDL (Fig. 2A-C).

Discussion
In this study we demonstrate that chronic consumption of a HF-S diet induces markers of
intramyocellular lipid accumulation in the soleus, a predominately red or oxidative muscle, but
not in the EDL, a mainly white or glycolytic muscle, in mice. Increased intramyocellular lipid
specific to red muscle is consistent with fundamental fiber-specific differences in intermediary
metabolism and nutrient oxidation; namely red muscle ordinarily is reliant on fat as fuel and
white muscle is glucose-dependent [31]. Preferential accumulation of triacylglycerol in type I
fibers has been reported in rats [39] and humans [8, 9]. Our findings also suggest that increased
abundance of fatty acid transport and triacylglycerol esterification genes, and decreased expres-
sion of mediators of fatty acid oxidation in red, but not white myocytes, in response to HF-S
are likely contributors to the red muscle-specific intramyocellular lipid accumulation [40–43].
While HF-S-induced changes in intermediary metabolism have in past been reported [35, 36],
here we show muscle type-specificity of this effect and we highlight the importance of consider-
ing fiber type when interpreting past publications and in future study design.

In past enrichment of a high fat diet of corn oil with pharmaceutical n-3 PUFA derivative,
α-ethyl DHA ethyl ester, elicited promising effects in preventing high fat diet-induced muscle
triacylglycerol accretion in male C57BL/6N mice [23]. We introduce a novel finding in which
enrichment of a chronic HF-S diet with natural fish oil abolished markers of intramyocellular
lipid accretion in the soleus and quadriceps muscles of mice. In fact histological muscle lipids
in HF-FO-fed mice was comparable visually to that observed in a low-fat standard chow-fed
control group, although it is important to note that not only the fat, but also the protein and
carbohydrate contents, of these diets differed. Whether this is a red fiber type-predominant
phenomena requires investigation by quantifying intramyocellular lipid in serial sections with
individual fiber type determination. n-3 PUFAs, especially of marine origin, have long been
hailed as effective mediators of hyperlipidemia [22, 23, 44–46] and at preventing hepatocellular
lipid accumulation [47] and have therefore gained popularity as an adjunct clinical therapeutic.
Based on past literature, the mechanism for the observed muscle lipid-lowering effect is
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Fig 2. Staining for Mitochondrial Enzymes: Serial sections of the EDL (A) and soleus (D) muscle stained for SDH and NADH-TR and histological
quantification SDH (B, E) and NADH-TR (C, F) staining intensity in extensor digitorum longus (B, C) and soleus (E, F) in mice fed a control (CON),
high saturated fat (HF-S) or high fat fish oil enriched (HF-FO) diet for 11 wks (Cohort 2). (A, D): Scale bars represent 100 μm. n = 5/6 per group.
Statistics: (E): Effect of diet: *P�0.05, compared to CON (of same fibre type); #P�0.05, compared to HF-S (of same fibre type). (F): Effect of diet: *P�0.005,
compared to CON (of same fibre type); #P�0.05, ##P�0.02, compared to HF-S (of same fibre type).

doi:10.1371/journal.pone.0117494.g002
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unclear; just a handful of studies [24–30, 48] provide disparate findings on the effect of dietary
n-3 PUFA enrichment on muscle lipid metabolism. We therefore sought to determine the po-
tential mechanisms by which partial replacement of dietary fat with fish oil in a HF-S setting
prevent lipid accumulation in mouse skeletal muscle. One of the main confounders encoun-
tered when assessing past published studies for evidence of a mechanism for n-3 PUFAs pre-
venting intramyocellular lipid/triacylglycerol was that direct comparison between studies was
not possible. This is because diets of varying length, energy intake from fat, proportion of n-3
PUFAs incorporated, n-3 PUFA species composition and n-3 PUFA source (marine oil, con-
centrates, ethyl esters) were implemented, as were varying rodent strain and gender. Another
notion neglected was the effect of HF-FO in red muscle since the majority have assessed mus-
cles of predominantly a white fast-twitch glycolytic nature [24–30]. In order to assess potential
mechanisms, we therefore undertook a single-study analysis of mediators of lipid metabolism
pathways in both red and white muscle to provide a snap-shot of the overall lipid metabolism
and importantly to prevent inter-study variation.

Prevention of markers of intramyocellular lipid accretion in the red muscle from HF-FO
mice, along with a congruent expression profile of lipid metabolism genes in both red and
white muscle types, suggests that n-3 PUFAs are protective irrespective of muscle fiber type.
This is, however, in contrast to a past report [48], previously unprecedented in its investigation
of diet-induced effects of fish oil or lard feeding on red and white muscle contractile and meta-
bolic gene abundance. While there were several diet-by-muscle interactions reported, dietary
fat predominantly elicited responses in the white EDL muscle [48]. The source of disparity be-
tween their white muscle-specific findings and our fiber type-independent responses are likely
a result of acute [48] versus chronic intervention and due to consumption of a relatively low fat
diet [48] versus an “extreme” high fat diet.

We hypothesised that the mechanisms through which dietary fish oil enrichment amelio-
rates HF-S-induced intramyocellular lipid are via increased muscle fatty acid uptake in con-
junction with upregulated fatty acid disposal and restrained lipogenesis. The observation that
HF-FO elicited a co-ordinate increase in the mRNA content of 3 skeletal muscle fatty acid
transporters (Fat/Cd36, Fatp1, Fatp4) supports this hypothesis. Our finding is also in keeping
with previous research in which FAT/CD36 and fatty acid uptake increased in the white muscle
of fish oil high fat-fed mice (35.5% E fat; vs tallow) [24] and in myotubes exposed to EPA
(0.6 mM for 24 h) [49]. We believe that increased lipid uptake by skeletal muscle in a HF set-
ting may be a compensatory response to prevent hyperlipidemia. We hypothesise that uptaken
fatty acids are then channelled into disposal pathways and the fate of surplus fatty acids in
muscle therefore warranted investigation. Induction of Pdk4mRNA is consistent with dietary
fat triggering a switch from carbohydrate to fatty acid oxidation in an environment of fatty
acid surplus [50, 51]. However, in past, HF-FO in female Wistar rats completely prevented [52]
(47% E fat lard-diet vs equi-caloric diet 7% lard replaced with marine oil), and in humans par-
tially ameliorated (75% fat vs equi-caloric diet 15% fat replaced with n-3 PUFA), induction of
PDK4 activity [53]. To exert their full effect, n-3 PUFAs require tissue incorporation, a process
which takes ~4 months to reach steady-state [54]. We believe the mentioned short [52] or
acute [53] interventions may have been insufficient for n-3 PUFAs to elicit their full effects, in
comparison to our diet of chronic duration, at least 3 times longer than past reported diets [52,
53]. This suggests that traditional pathways of fatty acid disposal are switched on by HF-FO.
Traditionally DGAT1 is considered an essential intracellular enzyme in preventing harmful
lipid intermediate accumulation in tissues by ensuring non-oxidised fatty acids enter neutral
triacylglycerol storage [42]. In this study, parallel increases in Dgat1 and lipolytic Hsl also sug-
gest that HF-FO may provide an alternative disposal route by promoting a futile triacylgly-
cerol-fatty acid cycle [55]. This simultaneous lipolysis and re-esterification to triacylglycerol
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would promote energy consumption, limiting triacylglycerol synthesis in myocytes and pre-
venting intramyocellular triacylglycerol accretion. This is the first evidence to date that HF-FO
may promote futile cycling, but this requires testing at the substrate level. An increase in mito-
chondrial fatty acid transporter, CPT1 [56], the rate-limiting step in fatty acid oxidation [57],
may actively prevent fatty acid from entering esterification and storage [58], providing further
evidence for conventional fatty acid disposal pathways being triggered by HF-FO. The interac-
tion of transcription co-activator PGC1α and transcription factor PPAR α is known to enhance
fatty acid oxidation [59]. The increase in Pgc1 αmRNA and prevention of HF-S-induced Ppar
α suppression by HF-FO is consistent with beliefs that n-3 PUFAs are natural PPAR α agonists
and that n-3 PUFAs, via PPAR α, exert triacylglycerol-lowering effects directing fat away from
storage into oxidation [60]. Although no change in their respective protein contents were ob-
served, measures of Pgc1 αmRNA are not necessarily reflected at the protein level [61, 62].
Mechanistically, greater Ppar α and Pgc1 αmRNA combined with CPT1b mRNA and protein
induction by HF-FO may promote mitochondrial fatty acid entry and oxidation, quenching
intramyocellular triacylglycerol. In order to understand the contribution of mitochondrial
OXPHOS in disposal pathways, we measured the protein abundance of OXPHOS Complexes
I-V, as they reflect mitochondrial density and oxidation [63]. Despite research investigating
the effect of HF-FO (60% E fish oil) on OXPHOS proteins in murine liver [29], to the best of
our knowledge, this is the first characterisation of HF-FO-mediated changes in OXPHOS
Complex I-V protein in muscle. HF-FO induction of Complex-V reflects increased flux
through this pathway and greater availability of substrate from fatty acid oxidation. Increased
mitochondrial enzymes, SDH and NADH-TR, in HF-FO, particularly in red muscle, are also
suggestive of mitochondrial oxidative phosphorylation contributing to the prevention of intra-
myocellular lipid accretion. Though the contribution of peroxisomal pathways of fatty acid dis-
posal requires investigation.

Finally, our study was designed to investigate the effects of HF-FO in both males and fe-
males, as past studies have reported sex-specific responses to HF feeding in rodents [35, 36]. In
contrast, we demonstrated that both sexes were equally vulnerable to HF-S-induced metabolic
dysfunction at the whole-body and skeletal muscle levels. In past, HF-S females upregulated
adipose storage and muscle fatty acid oxidation [36]; whereas males, less efficient at promoting
these pathways instead directed triacylglycerol to the liver, where oxidation increased [36].
Though, multiple methodological factors, including diet composition (31.4% [36] vs 65% satu-
rated fat), duration (6 [36] vs 3.5 months) and species (rats [36] vs mice) may produce dispari-
ties. In keeping with HF-S eliciting no sex-specific responses, HF-FO was equally protective in
males and females in the current study. These data suggest that gender-specific responses to n-
3 PUFA could be a trivial consideration in the clinical setting and in future studies.

In conclusion, this is a novel study identifying the potential mechanisms by which n-3
PUFA enrichment, from fish oil, may prevent HF-S-induced dysfunction in fatty acid metabo-
lism pathways in skeletal muscle, and is the first to investigate both the effects in red and white
muscle, and female and male settings. We provide insights into the changes induced within
skeletal muscle at the mRNA and protein levels as a result of dietary fatty acid composition and
implicate increased fatty acid transport, enhanced myocyte triacylglycerol storage and synthe-
sis, and reduced/incomplete oxidation in the inappropriate intramyocellular lipid accretion ob-
served in red oxidative muscle upon long-term HF-S feeding. According to analyses of the
mRNA, protein and enzyme contents of key mediators of fatty acid metabolism, we demon-
strate that HF-FO likely prevents HF-S-induced intramyocellular lipid accumulation by a con-
current increase in mediators of fatty acid uptake and utilisation, and suppression of mediators
promoting fatty acid storage and lipogenesis. Future research would best focus on confirming
the proposed mechanistic pathways at the substrate level. Furthermore given the benefits of
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dietary fish oil enrichment in preventing lipid-induced metabolic dysfunction, understanding
the translatability of these findings to a clinical setting is vital, especially as 60% E from fat is an
“extreme” high fat diet whilst replacing 7.5% of saturated fat with n-3 PUFAs from fish oil is
the equivalent of a high intake of n-3 PUFAs in humans.
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S1 Fig. Representative Western Blots Probed for Fatty Acid Utilisation and Oxidative
Phosphorylation Proteins. Carnitine palmitoyl transferase 1b (CPT1b), peroxisome prolifer-
ative activated receptor γ coactivator 1 α (PGC1 α) and peroxisome proliferator activator re-
ceptor α (PPAR α) and Complex-I to—V protein in the extensor digitorum longus (EDL) and
soleus (SOL) muscles of male and female mice fed a control (CON), high saturated fat (HF-S)
and high fat fish oil enriched (HF-FO) diet for 14 wks (Cohort 1).
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