Matthew Thomas Doyle, Marcin Grabowicz, Kerrie Leanne May, and Renato Morona **Lipopolysaccharide surface structure does not influence IcsA polarity** FEMS Microbiology Letters, 2015; 362(8):fnv042-1-fnv042-7

© FEMS 2015. All rights reserved

This is a pre-copyedited, author-produced PDF of an article accepted for publication in **FEMS Microbiology Letters**, following peer review.

The version of record Matthew Thomas Doyle, Marcin Grabowicz, Kerrie Leanne May, and Renato Morona

Lipopolysaccharide surface structure does not influence lcsA polarity FEMS Microbiology Letters, 2015; 362(8):fnv042-1-fnv042-7 *is available online at:* <u>http://dx.doi.org/10.1093/femsle/fnv042</u>

PERMISSIONS

http://www.oxfordjournals.org/en/access-purchase/rights-and-permissions/selfarchiving-policyb.html

Accepted Manuscript

The accepted manuscript is defined here as the final draft author manuscript, as accepted for publication by a journal, including modifications based on referees' suggestions, before it has undergone copyediting and proof correction.

Authors may upload their accepted manuscript PDF to an institutional and/or centrally organized repository, provided that public availability is delayed until **12 months after first online publication** in the journal.

When uploading an accepted manuscript to a repository, authors should include the following acknowledgment as well as a link to the version of record. This will guarantee that the version of record is readily available to those accessing the article from public repositories, and means that the article is more likely to be cited correctly.

This is a pre-copyedited, author-produced PDF of an article accepted for publication in [insert journal title] *following peer review. The version of record* [insert complete citation information here] *is available online at: xxxxxxx* [insert URL that the author will receive upon publication here].

7 June 2016

FEMS Microbiology Letters

http://mc.manuscriptcentral.com/fems

Lipopolysaccharide surface structure does not influence IcsA polarity.

Journal:	FEMS Microbiology Letters
Manuscript ID:	Draft
Manuscript Type:	Research Letter
Date Submitted by the Author:	n/a
Complete List of Authors:	Doyle, Matthew; The University of Adelaide, Molecular and Cellular Biology Grabowicz, Marcin; Princeton University, Molecular Biology May, Kerrie; Princeton University, Molecular Biology Morona, Renato; The University of Adelaide, Molecular and Cellular Biology
Keywords:	Outer membrane, Bacterial pole, Lipopolysaccharide, Autotransporter, Minicell, Shigella
All articles in FEMS Microbiology Letters are published under one of eight subject sections. Please select the most appropriate subject category for your submission from the drop down list:	Pathogens & Pathogenicity

SCHOLARONE[™] Manuscripts

FEMS Microbiology Letters

2 3 4	1	TITLE: Lipopolysaccharide surface structure does not influence IcsA polarity.
5 6 7	2	
8 9 10	3	RUNNING TITLE: LPS and IcsA localisation.
10 11 12	4	
13 14 15	5	AUTHORS:
16 17	6	Matthew Thomas Doyle ^a , Marcin Grabowicz ^b , Kerrie Leanne May ^b , and Renato Morona ^{a,#}
18 19	7	
20 21 22	8	ADDRESS WORK WAS PERFORMED:
22 23 24	9	Department of Molecular and Cellular Biology, School of Biological Sciences, University of
25 26	10	Adelaide, Adelaide 5005, Australia
27 28	11	
29 30	12	AFFILIATIONS:
31 32 33	13	^a Department of Molecular and Cellular Biology, School of Biological Sciences, University of
34 35	14	Adelaide, Adelaide, Australia
36 37	15	^b Department of Molecular Biology, Princeton University, Princeton, USA
38 39	16	
40 41 42	17	CORRESPONDING EMAIL: [#] Renato Morona: renato.morona@adelaide.edu.au.
42 43 44	18	
45 46	19	KEY WORDS: Outer membrane, Bacterial pole, Lipopolysaccharide, Autotransporter,
47 48	20	Minicell, Shigella
49 50 51 52 53 54 55 56 57 58 59	21	

22 ABSTRACT

23	Shigella species are the causative agents of human bacillary dysentery. These bacteria spread
24	within the lining of the gut via a process termed actin-based motility whereby an actin 'tail' is
25	formed at the bacterial pole. The bacterial outer membrane protein IcsA initiates this process,
26	and crucially, is precisely positioned on the bacterial polar surface. Lipopolysaccharide (LPS)
27	O-antigen surface structure has been implicated as an augmenting factor of polarity
28	maintenance due to the apparent dysregulation of IcsA polarity in O-antigen deficient strains.
29	Due to Shigellae having long and short O-antigen chains on their surfaces, it has been
30	proposed that O-antigen chain lengths are asymmetrically distributed to optimize IcsA
31	exposure at the pole and mask exposure laterally. Additionally, it has been proposed that LPS
32	O-antigen restricts IcsA diffusion from the pole by maintaining minimal membrane fluidity.
33	This study utilizes minicells and quantitative microscopy providing data refuting the models
34	of asymmetric masking and membrane diffusion, and supporting a model of symmetric
35	masking of IcsA. We contend that IcsA surface distribution is equivalent between wild-type
36	and O-antigen deficient strains, and that differences in cellular IcsA levels have confounded
37	previous conclusions.

39	Shigella species such as Shigella flexneri are human specific Gram negative bacterial
40	pathogens that are adapted to the invasion of colonic mucosa leading to dysentery (Niyogi
41	2005; Lima et al., 2015). The outer membrane autotransporter protein IcsA is essential for
42	intra- and inter-cellular spreading of S. flexneri in epithelia via the process of actin-based
43	motility (Bernardini et al., 1989; Lett et al., 1989; Goldberg et al., 1995; Kocks et al., 1995;
44	Egile et al., 1999). IcsA is localized to the surface of the old bacterial pole (that which is not
45	derived from the septum of the parent cell) where it binds host cell actin recruiting /
46	polymerizing complexes required for this motility (Egile et al., 1999; Steinhauer et al., 1999;
47	Snapper et al., 2001; Suzuki et al., 2002; May et al., 2008; Valencia-Gallardo et al., 2014).
48	Hence, maintenance of an asymmetrical spatial surface distribution is critical for appropriate
49	functioning of IcsA in all Shigellae species. By mechanisms that are yet to be fully
50	elucidated, new IcsA is secreted to the pole after pre-secretion cytoplasmic accumulation
51	(Charles et al., 2001; Rokney et al., 2009). IcsA surface polarity is also refined by the actions
52	of its specific outer membrane protease IcsP which is localised to the new cell pole and the
53	septa of dividing bacteria (Egile et al., 1997; Tran et al., 2013). This opposing distribution
54	results in asymmetric IcsA cleavage and refines IcsA surface polarity (Tran et al., 2013).
55	Lipopolysaccharide (LPS) structure has also been implicated as a modulating factor in
56	IcsA biogenesis, polarity, and function. Certainly, S. flexneri spreading is abrogated upon
57	changes in LPS structure (Sandlin et al., 1995; Sandlin et al., 1996; Hong et al., 1997; Van
58	den Bosch et al., 1997). However, there is disagreement in the literature concerning the
59	specific mechanisms by which LPS effects IcsA. For instance, immunofluorescence
60	microscopy and immunogold electron microscopy studies have reported that IcsA can be
61	found at increased levels along the lateral surface of rough (R-LPS) S. flexneri (strains that
62	lack the O-antigen repeat chain component of LPS), as opposed to the refined polar detection

FEMS Microbiology Letters

63	of smooth (S-LPS) wild-type S. flexneri (Sandlin et al., 1995; Van den Bosch et al., 1997;
64	Robbins et al., 2001). In explanation, it was proposed that R-LPS strains have higher
65	membrane fluidity (Figure 1A) resulting in easier diffusion of IcsA away from the pole and
66	down the sides of the bacterium (Robbins et al., 2001). However, this is confounded by the
67	realization that LPS O-antigen chains mask detection of IcsA by limiting antibody access
68	(Morona et al., 2003c; Morona et al., 2003b; Morona et al., 2003a). Therefore, the refined
69	polar detection of IcsA observed on S. flexneri may not be the complete picture of its actual
70	surface localization. Further complicating is that S. flexneri decorates its surface with two
71	modal lengths of O-antigen repeats; short type (^S LPS; 11-17 repeats) (Morona et al., 1995)
72	and very long type (^{VL} LPS; 90+ repeats) (Hong et al., 1997) which are regulated by the
73	WzzB _{SF} and WzzB _{pHS2} inner membrane co-polymerases respectively (Morona <i>et al.</i> , 1995;
74	Stevenson et al., 1995; Hong et al., 1997). It has been hypothesized on multiple occasions
75	that S. flexneri has two types of O-antigen modal lengths to counteract the steric hindrance
76	effect of LPS, whilst retaining protection from host defences and colicins (Morona et al.,
77	2003c; Pugsley et al., 2004; Scribano et al., 2014; Tran et al., 2014). In this model, ^{VL} LPS is
78	required for serum resistance, whereas ^S LPS minimizes IcsA masking at the pole such that it
79	can access external actin recruiting complexes (Figure 1B).
80	Due to the confounding nature of these models (masking, lateral diffusion / membrane
81	fluidity, asymmetric O-antigen chain lengths), the exact effects of LPS on IcsA surface
82	localisation remains enigmatic. This work unravels the IcsA-LPS relationship in S. flexneri
83	by first examining whether LPS O-antigen modal chain lengths are asymmetrically
84	distributed in the outer membrane. IcsA localizations in the rough and wild-type membrane
85	are then quantified and directly compared allowing a re-evaluation of the asymmetrical
86	masking and lateral diffusion models. The results obtained challenge current thoughts

1		
2 3 4	87	concerning the LPS-IcsA relationship and provide further insights into IcsA polar
5	88	positioning.
7 8		
9 10		
11		
13		
15		
17		
19		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38 30		
40 41		
42		
44		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

89 MATERIALS AND METHODS

Bacterial strains, plasmids and culture. Lists of strains and plasmids utilized in this study are included in Table 1. *S. flexneri* colonies were grown on Congo Red agar for confirmation of virulence plasmid presence before routine growth in Luria-Bertani (LB) media at 37° C with shaking. Unless otherwise stated, bacteria were sub-cultured to a log-phase OD600 reading of 0.5 before experimental use. When required, broths were supplemented with the following additives at respective concentrations; tetracycline (10 µg mL⁻¹), kanamycin (50 µg mL⁻¹), and ampicillin (50 µg mL⁻¹).

Construction of minD mutant. The minCDE locus of S. flexneri 2457T was PCR amplified using oligonucleotides minF (gacttgcctcaatataatcc) and minR (tctgtgcgtgggaacagc) that anneal to nt positions 1210181-1210200 and 1208137-1208154 respectively on the 2457T chromosome (Wei et al., 2003). The amplicon was cloned into pGEMT-Easy (Promega) creating pKMRM96 (Table 1). To disrupt the *minD* gene, the kanamycin resistance (Km^R) cassette from pKD4 (Datsenko et al., 2000) was amplified using P1PacI (ccttaattaagtgtaggctggagctgcttc) and P2PacI (ccttaattaacatatgaatatcctccttag) incorporating flanking PacI sites which were used to insert the Km^R cassette into the native PacI site within the *minD* gene in pKMRM96 resulting in pKDMRM161 (Table 2). The *min* locus containing disrupted minD:: Km^R was then amplified using minF/R and the amplicon used in recombineering mutagenesis of 2457T minD genomic copy via the λ red recombinase system (Datsenko et al., 2000). Antibodies. Polyclonal rabbit anti-IcsA (passenger), rabbit anti-WzzB_{SF}, and rabbit anti-WzzB_{pHS2} were produced and validated as described previously (Van den Bosch et al., 1997;

FEMS Microbiology Letters

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24 24	
34	
35	
36	
37	
38	
39	
10	
- + ∪ ∕11	
41	
42	
43	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
53	
54	
55	
55	
00	
5/	
58	
59	
60	

Daniels *et al.*, 1999; Purins *et al.*, 2008). Mouse anti-DnaK monoclonal antibody was from
Enzo Life Sciences.

115

116 **Total bacterial protein samples.** 1:50 sub-cultures were grown to log-phase. 5 x 10^8 of log-117 phase bacteria were collected by centrifugation (16000 x g, 1 min, 4 °C), resuspended in 100 118 μ L of SDS-PAGE loading buffer (Lugtenberg *et al.*, 1975), and heated to 100 °C for 10 min 119 before SDS-PAGE and immunoblot analysis.

120

121 **Bacterial IcsA labelling.** Immunofluorescence (IF) staining was conducted essentially as 122 described previously (Tran et al., 2013). All solutions were filtered through a 0.2 µm nitrocellulose filter. 10⁸ log-phase bacteria were harvested from a 1:50 sub-culture by 123 124 centrifugation (16000 x g, 2 min, 20 °C), resuspended in 3.7 % (v/v) formaldehyde solution 125 (Sigma) in phosphate buffered saline (PBS), and incubated at 20 °C for 20 min. Fixed 126 bacteria were washed twice in PBS before resuspension in 100 μ L of PBS. 5 μ L of the 127 bacteria were spotted onto sterile round coverslips (at the bottom of a 24-well tray) that were 128 pre-treated with 10 % (v/v) poly-L-lysine solution (Sigma) in PBS. Bacteria were centrifuged 129 (775 x g, 5 min, 20 °C) and then incubated for 2 h with anti-IcsA diluted 1:100 in PBS 130 containing 10 % (v/v) fetal calf serum (FCS). Bacteria were washed three times with PBS and 131 then incubated for 30 min at 37 °C with donkey anti-rabbit Alexa Fluor 488 antibody 132 (Invitrogen) diluted 1:100 in PBS containing 10 % (v/v) fetal calf serum (FCS). Bacteria 133 were washed three more times with PBS before mounting with 20 % Mowiol 4-88 (Calbiochem), $4 \text{ mg mL}^{-1} p$ -phenylenediamine. 134 135 136 Minicell and whole-cell purification. Separation of minicells and whole-cells was

137 conducted as described previously (Achtman et al., 1979). The minicell strain was sub-

2		
3	138	cultured (1:20) until log-phase, or sub-cultured for 16 h to produce stationary phase cultures.
5	139	A volume of 250 mL bacteria from both log-phase and stationary-phase cultures were
7 8	140	pelleted by centrifugation (8,600 x g, 20 min, 4 °C;) and washed in 10 mL of buffered saline
9 10	141	gelatin (BSG; 0.85 % (w/v) NaCl, 0.03 % (w/v) KH ₂ PO ₄ , 0.06 % (w/v) Na ₂ HPO ₄ , 100 µg/ml
11 12	142	gelatin). Bacteria were pelleted again (20,400 x g, 8 min, 4 °C) and resuspended in 2 mL of
13 14 15	143	BSG. Bacteria were layered onto sucrose gradients and centrifuged (3300 x g, 30 min, 4 °C).
16 17	144	The minicell fraction in the middle of the tube was extracted using a syringe. The whole-cell
18 19	145	fraction at the bottom of the tube was also collected and diluted in 50 mM Tris pH 7.5. The
20 21	146	minicells were pelleted (20,400 x g, 8 min, 4 °C), resuspended in 1 mL of BSG and purified
22 23 24	147	once more on a sucrose gradient as described. The minicells were then re-pelleted (as above)
24 25 26	148	and resuspended in 2 mL of 50 mM Tris pH 7.5. Cell concentrations were normalised on the
27 28	149	basis that an OD600 = 1.0 represents $5 \ge 10^8$ whole cells and $2 \ge 10^9$ minicells.
29 30	150	
31 32	151	Minicell and whole-cell membrane protein and LPS analysis. As described previously
33 34 35	152	(Achtman et al., 1979), purified minicells and whole-cells were lysed by sonication in 20 mM
36 37	153	Tris-HCl pH 8.0, 10 mM NaCl buffer containing 0.1 mg mL ⁻¹ DNase, 0.1 mg mL ⁻¹ RNase,
38 39	154	and 0.1 mM phenylmethanesulfonyl fluoride. Unbroken cells were removed by centrifugation
40 41	155	(5,500 x g, 25 min, 4 °C) and the lysate was ultracentrifuged (100,000 x g, 60 min, 4 °C). The
42 43	156	whole membrane pellet was rinsed with buffer, homogenised in 20 mM Tris-HCl pH 8.0, 10
44 45 46	157	mM NaCl buffer containing 1 % (v/v) SDS, and incubated on ice for 1 h. This was then
47 48	158	ultracentrifuged (as above) and the resulting supernatant collected. Protein content was
49 50	159	assessed using a BCA Protein Estimation assay (Pierce). Membrane samples from minicells
51 52 53	160	and whole-cells were standardised to equivalent total membrane protein concentration for
55 54 55 56 57	161	protein analysis by immunoblot. For LPS analysis, samples were treated with 0.5 mg mL ⁻¹
58 59		
60		SahalarOna Cuprart 4,404/004,4400

FEMS Microbiology Letters

Proteinase K in SDS-PAGE loading buffer at 56 °C for 16 h and analyzed by SDS-PAGE and
silver stain.

Microscopy and quantitation. All images of IF labelled bacteria were captured using an Olympus IX-7 Microscope and MetaMorph software (Molecular Devices) with a phase contrast 100 x oil immersion objective and a 1.5 x enlarger. For fluorescence imaging an X-Cite 120Q lamp was used set at high intensity. All live bacterial imaging was conducted on custom made 1 % (w/v) agarose-LB solid media mounts with 37 °C incubation. All bacterial IcsA fluorescence images were acquired with 100 millisecond exposures. Fluorescence images for background correction were taken for each experiment. IcsA fluorescence images for presentation were recolored using the ICA LUT in ImageJ such that the full intensity spectrum can be easily observed. MetaMorph line-scan measurement tools were used to quantitate fluorescence intensities across the perpendicular axis of a point-to-point scan. Scans were conducted from pole-to-pole starting from intense pole, with scan width (perpendicular axis) equal to the bacterium (approx. 20 pixels). For each strain under investigation, cumulative scans were conducted of many bacteria (50 bacteria from each independent experiment 'n') that were without a visible septum, resulting in distribution profiles representative of the population.

180 RESULTS AND DISCUSSION

Any asymmetry in LPS O-antigen chain lengths would dramatically change the apparent IcsA polarity between S-LPS and R-LPS strains and may allow increased exposure of IcsA at the pole. To investigate LPS asymmetry we constructed an S. flexneri minD- strain (MG292; Table 1). MinD (along with MinC and MinE) regulates appropriate positioning for septum formation in bacterial division (Treuner-Lange et al., 2014). Mutants in this system form minicells that result from mislocalized septation at the poles (de Boer *et al.*, 1989). As such, minicells are rich in polar membrane material compared to whole-cells and have been vital for investigations on the polar cytology (Koppelman et al., 2001; Lai et al., 2004). The minD-strain behaved as expected with the formation of free minicells and observed polar budding of minicells (Figure 2A). We then purified both whole-cell and minicell populations of this strain based on density and assessed purity microscopically. The whole-cell fraction was 98.9 % pure (one budding minicell observed per 94 bacteria), and whole-cells were not observed in the minicell fraction (Figure 2B).

Upon assessment of extracted membrane protein (Figure 2C), we observed no discernible difference between whole-cells and minicells in the abundance of O-antigen chain length modulators WzzB_{SF} and WzzB_{pHS2}. As expected, minicell membranes were more abundant in IcsA than whole-cells showing that minicells represent polar material of the IcsA pole. Additionally, we also observed no differences in the relative abundances of ^SLPS and ^{VL}LPS between minicells and whole-cells. This was true for purified populations from both log-phase and stationary phase cultures (Figure 2D). Therefore, these results do not support a model of enhancement of IcsA exposure at the pole due to an asymmetric distribution of LPS O-antigen chain lengths between the pole and lateral surfaces (Figure 1B). Consequently, the previously observed changes in apparent IcsA distributions between S-LPS and R-LPS bacteria must be due to one or more of the effects of symmetrical masking, membrane

FEMS Microbiology Letters

fluidity and lateral diffusion, or other factors. It should also be noted here that, to our
knowledge, this is the first observation of LPS O-antigen modal length distribution using
minicells.

To thoroughly model IcsA distributions and the effects of LPS, we devised methods to quantitate the average IcsA surface population distribution for a given strain removing biases of qualitative assessment and artificial selection of bacteria (see Materials and *Methods*). We first investigated IcsA differences between the wild-type and R-LPS derivative strains (Figure 3A, B, and C). Our R-LPS strain is unable to make O-antigen due to the absence of RmID which synthesizes dTDP-rhamnose (a precursor sugar for O-antigen synthesis, see Table 1). Unexpectedly, we observed a large increase in IcsA levels in the R-LPS strain relative wild-type (Figure 3A) which had not previously been reported. However, qualitative IcsA surface distributions replicated previous reports with the R-LPS strain displaying higher lateral and bipolar IcsA detection compared to wild-type (Figure 3B). We quantified these distributions (Figure 3C) and found that IcsA surface detection was significantly more intense for the R-LPS strain (Figure C_i , p = 0.0002), yet was still highly localized to the old pole (Figure C_{ii}). Direct comparisons of S-LPS and R-LPS IcsA distributions (Figure C_{iii}) revealed that the R-LPS strain had significantly higher placement of IcsA at the new pole, whether assessed relative to the old pole or the mid-cell (p = 0.0053 and p < 0.0001 respectively). There was no significant change in IcsA old pole localization relative the mid-cell between S-LPS and R-LPS strains. These data support previous reports that R-LPS strains have an increased propensity for bipolarity and a reduction in polar refinement, yet it is difficult to assess whether this is due to the increase in overall IcsA expression or due to changes in membrane diffusion of IcsA. Therefore we repeated this investigation using strains expressing IcsA from a plasmid

ScholarOne Support 1-434/964-4100

(pIcsA; see Table 1). These conditions equalized IcsA levels between S-LPS and R-LPS

FEMS Microbiology Letters

2 3	230	strains as shown (Figure 3D). Qualitatively, IcsA surface distributions on R-LPS bacteria
4 5 6	231	again appeared more intense than S-LPS, but had similar overall distributions (Figure 3E).
0 7 8	232	This was recapitulated when quantitated (Figure 3Fi and Fii), but unexpectedly, the quotient
9 10	233	of these distributions (Figure 3Fiii) did not show any significant shifts in IcsA localization for
11 12	234	any point between the poles.
13 14	235	Contrary to the current literature, the results presented in Figure 3 show that upon
15 16 17	236	IcsA cellular levels being equal, IcsA surface distribution remains indistinguishable
18 19	237	regardless of the presence of LPS O-antigen on the membrane. This supports the notion that
20 21	238	the masking effect of LPS is exerted symmetrically over the surface of S. flexneri, and is
22 23	239	further supported by our observations of equivalent O-antigen chain lengths between whole
24 25	240	and minicells (indicating symmetrical chain length distributions for wild type) presented in
26 27 28	241	Figure 2. Furthermore, since LPS changes do not affect IcsA polarity, it also shows that R-
29 30	242	LPS does not consequently increase the fluidity of IcsA molecules in the outer membrane
31 32	243	(Figure 1A). Lateral diffusion of IcsA from the pole is either unchanged or does not occur.
33 34	244	It is also interesting that IcsA levels are increased when O-antigen synthesis is
35 36	245	blocked. Although previously utilized S. <i>flexneri</i> strains were deficient in O-antigen due to
37 38 39	246	varied mutations (Sandlin et al., 1995; Sandlin et al., 1996; Robbins et al., 2001), it is
40 41	247	possible that previous attributions of LPS effecting IcsA polarity were due to overlooked
42 43	248	changes in cellular IcsA concentration. The reason for this change in IcsA level is uncertain
44 45	249	but it is plausible that degradases responsible for normal IcsA turnover are functionally
46 47	250	altered in R-LPS strains resulting in higher steady-state levels. Indeed, we have previously
48 49 50	251	shown that periplasmic protease DegP has altered activities with respect to IcsA maintenance
50 51 52	252	in R-LPS <i>S. flexneri</i> (Teh <i>et al.</i> , 2012). Nevertheless, it is intriguing that increased IcsA levels
53 54	253	increase the tendency for abnormal placement of $LcsA$ at the new pole. It has been proffered
55 56	255	that autoplasmic accumulation at the pole goods initial placement of $las A$ (Charles et al.
57 58	234	that cytoplashine accumulation at the pole seeds initial placement of icsA (Charles et al.,

FEMS Microbiology Letters

 255 2001; Rokney <i>et al.</i>, 2009) – it is possible that changes in IcsA abundance can influence this accumulation and increase the tendency for off target accumulation. This notion is consistent with the increases of IcsA at the new pole observed in this work (Figure 3C). In summary, this study reveals that; (i) <i>S. flexneri</i> IcsA polarity, and any diffusion of IcsA in the outer membrane, is not affected by LPS O-antigen presence, (ii), IcsA is affected by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv) changes in O-antigen synthesis can deregulate IcsA levels effecting polarity. FUNDING This work was supported by the National Health and Medical Research Council (NHMRC) of Australia [Grant number 56526]. ACKNOWLEDGEMENTS MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. We thank the Research Centre for Infectious Diseases (RCID) for support during this work. We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	Page 13 of 27		FEMS Microbiology Letters	
 2001; Rokney et al., 2009) – it is possible that changes in IcsA abundance can influence this accumulation and increase the tendency for off target accumulation. This notion is consistent with the increases of IcsA at the new pole observed in this work (Figure 3C). In summary, this study reveals that; (i) <i>S. flexneri</i> IcsA polarity, and any diffusion of IcsA in the outer membrane, is not affected by LPS O-antigen presence, (ii), IcsA is affected by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv) changes in O-antigen synthesis can deregulate IcsA levels effecting polarity. FUNDING FUNDING of Australia [Grant number 565526]. of Australia [Grant number 565526]. We thank the Research Centre for Infectious Diseases (RCID) for support during this work. We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	1			
256 accumulation and increase the tendency for off target accumulation. This notion is consistent 257 with the increases of IcsA at the new pole observed in this work (Figure 3C). 258 In summary, this study reveals that; (i) S. Jexneri IcsA polarity, and any diffusion of 259 IcsA in the outer membrane, is not affected by LPS O-antigen presence, (ii), IcsA is affected 260 by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv) 261 changes in O-antigen synthesis can deregulate IcsA levels effecting polarity. 262 FUNDING 263 FUNDING 264 This work was supported by the National Health and Medical Research Council (NHMRC) 265 of Australia [Grant number 565526]. 266 ACKNOWLEDGEMENTS 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 265 Gradienee 266 Gradienee 267 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 268 <td>2 3</td> <td>255</td> <td>2001; Rokney et al., 2009) – it is possible that changes in IcsA abundance can influence this</td>	2 3	255	2001; Rokney et al., 2009) – it is possible that changes in IcsA abundance can influence this	
 with the increases of lesA at the new pole observed in this work (Figure 3C). In summary, this study reveals that; (i) <i>S. flexneri</i> lesA polarity, and any diffusion of lesA in the outer membrane, is not affected by LPS O-antigen presence, (ii), lesA is affected by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv) changes in O-antigen synthesis can deregulate lesA levels effecting polarity. 263 FUNDING 264 This work was supported by the National Health and Medical Research Council (NHMRC) of Australia [Grant number 565526]. 266 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	4 5 6	256	accumulation and increase the tendency for off target accumulation. This notion is consistent	
9 258 In summary, this study reveals that; (i) <i>S. flexneri</i> IcsA polarity, and any diffusion of 11 259 IcsA in the outer membrane, is not affected by LPS O-antigen presence, (ii), IcsA is affected 260 by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv) 261 changes in O-antigen synthesis can deregulate IcsA levels effecting polarity. 262 263 263 FUNDING 264 This work was supported by the National Health and Medical Research Council (NHMRC) 265 of Australia [Grant number 565526]. 266 267 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 261 414 262 414 263 Grade the second Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 264 414 265 61 266 61	7 8	257	with the increases of IcsA at the new pole observed in this work (Figure 3C).	
11 259 IcsA in the outer membrane, is not affected by LPS O-antigen presence, (ii), IcsA is affected 12 260 by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv) 12 261 changes in O-antigen synthesis can deregulate IcsA levels effecting polarity. 13 262 14 263 FUNDING 25 of Australia [Grant number 565526]. 266 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 289 60 US 261 265 266 262 266 267 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 265 266 266 267 268 268 <t< td=""><td>9 10</td><td>258</td><td>In summary, this study reveals that; (i) S. flexneri IcsA polarity, and any diffusion of</td></t<>	9 10	258	In summary, this study reveals that; (i) S. flexneri IcsA polarity, and any diffusion of	
11 260 by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv) 12 261 changes in O-antigen synthesis can deregulate IcsA levels effecting polarity. 12 262 12 263 FUNDING 12 264 This work was supported by the National Health and Medical Research Council (NHMRC) 265 of Australia [Grant number 565526]. 266 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 286 444 444 445 445 446 446 447 447 448 448 444 444 444 446 444 446 444 447 444 448 444 444 444 444 444 444 444 444 <	11 12	259	IcsA in the outer membrane, is not affected by LPS O-antigen presence, (ii), IcsA is affected	
261 changes in O-antigen synthesis can deregulate IcsA levels effecting polarity. 262 263 263 FUNDING 264 This work was supported by the National Health and Medical Research Council (NHMRC) 265 of Australia [Grant number 565526]. 276 266 280 267 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoe Hoa Tran for critical reading of the manuscript. 389 444 444 456 456 457 457 458 458 459 459 We also thank Elizabeth Ngoe Hoa Tran for critical reading of the manuscript. 369 450 451 451 452 454 453 454 454 455 455 456 456 457 457 454 458 454 459 454 450 45	13 14 15	260	by symmetrical masking, (iii) O-antigen chain lengths are symmetrically distributed, and (iv)	
262 263 FUNDING 264 This work was supported by the National Health and Medical Research Council (NHMRC) 265 of Australia [Grant number 565526]. 266 267 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 289 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 280 270 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 281 270 282 283 283 284 294 295 205 296 206 297 207 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 283 296 295 296 206 297 207 298 208 298 209 <td>15 16 17</td> <td>261</td> <td>changes in O-antigen synthesis can deregulate IcsA levels effecting polarity.</td>	15 16 17	261	changes in O-antigen synthesis can deregulate IcsA levels effecting polarity.	
 263 FUNDING 264 This work was supported by the National Health and Medical Research Council (NHMRC) 265 of Australia [Grant number 565526]. 266 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoe Hoa Tran for critical reading of the manuscript. 	18 19	262		
 264 This work was supported by the National Health and Medical Research Council (NHMRC) 265 of Australia [Grant number 565526]. 266 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	20 21	263	FUNDING	
 265 of Australia [Grant number 565526]. 266 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	22 23	264	This work was supported by the National Health and Medical Research Council (NHMRC)	
 266 267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	24 25 26	265	of Australia [Grant number 565526].	
267 ACKNOWLEDGEMENTS 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 389 404 414 424 434 445 466 477 889 60 10 10 10 10 10 10 10 10 10 10 10 10 10	20 27 28	266		
 268 MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide. 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	29 30	267	ACKNOWLEDGEMENTS	
 269 We thank the Research Centre for Infectious Diseases (RCID) for support during this work. 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 	31 32	268	MTD is the recipient of a Doctor of Philosophy scholarship from the University of Adelaide.	
36 36 37 37 270 We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript. 39 40 41 42 43 44 45 46 47 48 99 50 51 52 53 54 55 56 60	33 34	269	We thank the Research Centre for Infectious Diseases (RCID) for support during this work.	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 13	35 36 37	270	We also thank Elizabeth Ngoc Hoa Tran for critical reading of the manuscript.	
30 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 13	37 38 39			
42 43 44 45 46 47 48 49 50 51 52 53 53 54 55 56 57 58 59 60	40 41			
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	42 43			
46 47 48 49 50 51 52 53 54 55 56 56 57 58 59 60 13	44 45			
48 49 50 51 52 53 54 55 56 57 58 59 60 13	46 47			
50 51 52 53 54 55 56 57 58 59 60 13	48 49			
52 53 54 55 56 57 58 59 60 13	50 51			
54 55 56 57 58 59 60 13	52 53			
56 57 58 59 60 13	54 55			
57 58 59 60 13	55 56 57			
60 13	58 50			
	60		13	

2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
31	
34	
35	
36	
37	
38	
39	
40	
/1	
41	
42	
43	
44	
45	
46	
47	
48	
10	
49 50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

271 REFERENCES

272	Achtman M, Manning PA, Edelbluth C & Herrlich P (1979) Export without Proteolytic
273	Processing of Inner and Outer-Membrane Proteins Encoded by F-Sex Factor Tra
274	Cistrons in Escherichia coli Minicells. P Natl Acad Sci USA 76: 4837-4841.
275	
276	Bernardini ML, Mounier J, d'Hauteville H, Coquis-Rondon M & Sansonetti PJ (1989)
277	Identification of <i>icsA</i> , a plasmid locus of <i>Shigella flexneri</i> that governs bacterial intra-
278	and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA
279	86: 3867-3871.
280	
281	Charles M, Perez M, Kobil JH & Goldberg MB (2001) Polar targeting of Shigella virulence
282	factor IcsA in Enterobacteriacae and Vibrio. Proc Natl Acad Sci US A 98: 9871-
283	9876.
284	
285	Daniels C & Morona R (1999) Analysis of Shigella flexneri Wzz (Rol) function by
286	mutagenesis and cross-linking: Wzz is able to oligomerize. Mol Microbiol 34: 181-
287	194.
288	
289	Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in
290	Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640-6645.
291	
292	de Boer PA, Crossley RE & Rothfield LI (1989) A division inhibitor and a topological
293	specificity factor coded for by the minicell locus determine proper placement of the
294	division septum in E. coli. Cell 56: 641-649.
295	

FEMS Microbiology Letters

2 3	296	Egile C, d'Hauteville H, Parsot C & Sansonetti PJ (1997) SopA, the outer membrane proteas	se
4 5 6	297	responsible for polar localization of IcsA in Shigella flexneri. Mol Microbiol 23:	
7 8	298	1063-1073.	
9 10	299		
11 12 12	300	Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ & Carlier MF (1999)	
13 14 15	301	Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein	
16 17	302	promotes actin nucleation by $Arp2/3$ complex and bacterial actin-based motility. J	
18 19	303	<i>Cell Biol</i> 146 : 1319-1332.	
20 21	304		
22 23 24	305	Goldberg MB & Theriot JA (1995) Shigella flexneri surface protein IcsA is sufficient to	
25 26	306	direct actin-based motility. Proc Natl Acad Sci USA 92: 6572-6576.	
27 28	307		
29 30	308	Hong M & Payne SM (1997) Effect of mutations in Shigella flexneri chromosomal and	
31 32 32	309	plasmid-encoded lipopolysaccharide genes on invasion and serum resistance. Mol	
33 34 35	310	Microbiol 24: 779-791.	
36 37	311		
38 39	312	Kocks C, Marchand JB, Gouin E, d'Hauteville H, Sansonetti PJ, Carlier MF & Cossart P	
40 41	313	(1995) The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of	
42 43 44	314	Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and	l
45 46	315	Escherichia coli respectively. Mol Microbiol 18: 413-423.	
47 48	316		
49 50	317	Koppelman CM, Den Blaauwen T, Duursma MC, Heeren RM & Nanninga N (2001)	
51 52 53	318	Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol 183:	
55 55	319	6144-6147.	
56 57	320		
58 59 60			15

321	Lai EM, Nair U, Phadke ND & Maddock JR (2004) Proteomic screening and identification of
322	differentially distributed membrane proteins in <i>Escherichia coli</i> . Mol Microbiol 52 :
323	3 1029-1044.
324	ł
325	Lett MC, Sasakawa C, Okada N, Sakai T, Makino S, Yamada M, Komatsu K & Yoshikawa
326	M (1989) <i>virG</i> , a plasmid-coded virulence gene of <i>Shigella flexneri</i> : identification of
327	the VirG protein and determination of the complete coding sequence. <i>J Bacteriol</i> 171 :
328	3 353-359.
329	
330	Lima IF, Havt A & Lima AA (2015) Update on molecular epidemiology of <i>Shigella</i>
331	infection. Current opinion in gastroenterology 31 : 30-37.
332	
333	Lugtenberg B, Meijers J, Peters R, van der Hoek P & van Alphen L (1975) Electrophoretic
334	resolution of the "major outer membrane protein" of Escherichia coli K12 into four
335	5 bands. <i>FEBS letters</i> 58 : 254-258.
336	5
337	May KL & Morona R (2008) Mutagenesis of the Shigella flexneri autotransporter IcsA
338	reveals novel functional regions involved in IcsA biogenesis and recruitment of host
339	neural Wiscott-Aldrich syndrome protein. <i>J Bacteriol</i> 190 : 4666-4676.
340)
341	Morona R & Van Den Bosch L (2003a) Lipopolysaccharide O antigen chains mask IcsA
342	(VirG) in Shigella flexneri. FEMS Microbiol Lett 221: 173-180.
343	3
	16

FEMS Microbiology Letters

3	344	Morona R & Van Den Bosch L (2003b) Multicopy <i>icsA</i> is able to suppress the virulence
4 5 6	345	defect caused by the wzz(SF) mutation in Shigella flexneri. FEMS Microbiol Lett 221:
7 8	346	213-219.
9 10	347	
11 12	348	Morona R, van den Bosch L & Manning PA (1995) Molecular, genetic, and topological
13 14 15	349	characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol
16 17	350	177: 1059-1068.
18 19	351	
20 21	352	Morona R, Daniels C & Van Den Bosch L (2003c) Genetic modulation of Shigella flexneri
22 23	353	2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized
24 25 26	354	for virulence. <i>Microbiology</i> 149: 925-939.
27 28	355	
29 30	356	Niyogi SK (2005) Shigellosis. J Microbiol 43: 133-143.
31 32	357	
33 34	358	Pugsley AP & Buddelmeijer N (2004) Traffic spotting: poles apart. Mol Microbiol 53: 1559-
35 36 37	359	1562.
38 39	360	
40 41	361	Purins L, Van Den Bosch L, Richardson V & Morona R (2008) Coiled-coil regions play a
42 43	362	role in the function of the Shigella flexneri O-antigen chain length regulator
44 45	363	WzzpHS2. <i>Microbiology</i> 154 : 1104-1116.
46 47 48	364	
49 50	365	Robbins JR, Monack D, McCallum SJ, Vegas A, Pham E, Goldberg MB & Theriot JA (2001)
51 52	366	The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol Microbiol 41:
53 54	367	861-872.
55 56	368	
57 58 50		
59 60		17

FEMS Microbiology Letters

369	Rokney A, Shagan M, Kessel M, Smith Y, Rosenshine I & Oppenheim AB (2009) E. coli
370	transports aggregated proteins to the poles by a specific and energy-dependent
371	process. J Mol Biol 392 : 589-601.
372	
373	Sandlin RC, Goldberg MB & Maurelli AT (1996) Effect of O side-chain length and
374	composition on the virulence of Shigella flexneri 2a. Mol Microbiol 22: 63-73.
375	
376	Sandlin RC, Lampel KA, Keasler SP, Goldberg MB, Stolzer AL & Maurelli AT (1995)
377	Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct
378	unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 63: 229-
379	237.
380	
381	Scribano D, Petrucca A, Pompili M, et al. (2014) Polar Localization of PhoN2, a Periplasmic
382	Virulence-Associated Factor of Shigella flexneri, Is Required for Proper IcsA
383	Exposition at the Old Bacterial Pole. <i>PloS one</i> 9 (2): e90230
384	
385	Snapper SB, Takeshima F, Anton I, et al. (2001) N-WASP deficiency reveals distinct
386	pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol
387	3 : 897-904.
388	
389	Steinhauer J, Agha R, Pham T, Varga AW & Goldberg MB (1999) The unipolar Shigella
390	surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of
391	IcsA occurs over the entire bacterial surface. Mol Microbiol 32: 367-377.
392	
	18

FEMS Microbiology Letters

3 ⊿	393	Stevenson G, Kessler A & Reeves PR (1995) A plasmid-borne O-antigen chain length
5	394	determinant and its relationship to other chain length determinants. FEMS Microbiol
7 8	395	<i>Lett</i> 125 : 23-30.
9 10	396	
11 12	397	Suzuki T, Mimuro H, Suetsugu S, Miki H, Takenawa T & Sasakawa C (2002) Neural
13 14	398	Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG
15 16 17	399	among the WASP family and determines the host cell type allowing actin-based
17 18 19	400	spreading. Cell Microbiol 4: 223-233.
20 21	401	
22 23	402	Teh MY, Tran EN & Morona R (2012) Absence of O antigen suppresses Shigella flexneri
24 25	403	IcsA autochaperone region mutations. <i>Microbiology</i> 158 : 2835-2850.
26 27	404	
28 29 20	405	Tran EN, Doyle MT & Morona R (2013) LPS unmasking of <i>Shigella flexneri</i> reveals
30 31 32	406	preferential localisation of tagged outer membrane protease IcsP to septa and new
33 34	407	poles $PloS$ one $8(7)$ · e70508
35 36	407	
37	408	
38 39	409	Tran ENH, Papadopoulos M & Morona R (2014) Relationship between O-antigen chain
40 41 42	410	length and resistance to colicin E2 in Shigella flexneri. Microbiol-Sgm 160: 589-601.
42 43 44	411	
45 46	412	Treuner-Lange A & Sogaard-Andersen L (2014) Regulation of cell polarity in bacteria. J Cell
47 48	413	<i>Biol</i> 206 : 7-17.
49 50	414	
51 52	415	Valencia-Gallardo CM, Carayol N & Tran Van Nhieu G (2014) Cytoskeletal mechanics
53 54	416	during Shigella invasion and dissemination in epithelial cells. Cell Microbiol
55 56	417	10.1111/cmi.12400.
58		
59 60		19

418	
419	Van den Bosch L & Morona R (2003) The actin-based motility defect of a Shigella flexneri
420	<i>rmlD</i> rough LPS mutant is not due to loss of IcsA polarity. <i>Microb Pathog</i> 35 : 11-18.
421	
422	Van den Bosch L, Manning PA & Morona R (1997) Regulation of O-antigen chain length is
423	required for Shigella flexneri virulence. Mol Microbiol 23: 765-775.
424	
425	Wei J, Goldberg MB, Burland V, et al. (2003) Complete genome sequence and comparative
426	genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 71: 2775-2786.
427	
428	
	20

1 TABLES

2 Table 1: Strains and plasmids used in this study

Strain or Plasmid	Description	LPS	Source
Strain			
2457T	Wild-type S. flexneri 2a	S	
RMA2041	2457T $\Delta icsA::Tc^{R}$	S	(Van den Bosch et al., 2003)
RMA2043	2457T $\Delta icsA::Tc^{R} \Delta rmlD::Km^{R}$	R	(Van den Bosch et al., 2003)
ETRM230	2457T $\Delta rmlD::Km^{R}$	R	(Tran et al., 2013)
MG292	2457T $minD::Km^R$	S	This study
Plasmids	- medium conv.number, colE1 <i>ori</i> Ap ^R Tc ^R		(Boliver at al. 1977)
pBK322	DDDDDD his size of the second se		
plcsA	pBR322 derivative containing cloned <i>icsA</i> gene, P_{icsA} promoter, Ap^{R}		(Morona <i>et al.</i> , 2003b)
pKD4	FLP Km template		(Datsenko et al., 2000)
pKD46	λ red recombinase, Ap ^k		(Datsenko et al., 2000)
pKMRM96	pGEMT:: <i>minCDE</i> , Ap ^R		This study
pKDMRM161	pGEMT:: <i>minCD::Km^RE</i> , Ap ^R		This study

 Tc^{R} = tetracycline resistance, Km^R = kanamycin resistance, Ap^R = ampicillin resistance, S = S-LPS, R = R-LPS

1 FIGURE LEGENDS

Figure 1: Models of IcsA surface polarity augmentation by LPS. (A) Lateral diffusion model. It has been proposed that R-LPS Shigellae (without O-antigen; Oag) has a higher membrane (M) fluidity causing in IcsA (red) deposited at the pole to defuse away from the pole and down the lateral edge. (B) Model of asymmetrical masking due to O-antigen modal lengths distribution. To optimize the pathogenic role of IcsA in recruiting host actin polymerizing complexes at the pole, it is thought that LPS O-antigen chain lengths may be useful in optimizing IcsA exposure at the pole by the use of ^SLPS (medium blue) at the pole and ^{VL}LPS (light blue) on the lateral edges to restrict IcsA exposure. The red cross depicts the notion that LPS O-antigen chains can inhibit access of antibodies to IcsA via steric hindrance Figure 2: Lateral and polar LPS has equivalent O-antigen modal lengths. (A) Phase micrographs of live S. *flexneri* showing wild type (2457T, top) and *minD*- phenotype (MG292, bottom). Arrowheads in the latter indicate free minicells and minicells budding from whole-cell poles. All scale bars represent 10 µm. (B) Phase micrographs of purified whole-cells and minicells from the *minD*- strain. (C) Western immunoblot analysis of standardized whole membrane samples extracted from purified whole-cells and minicells. Levels of both LPS-Oag modal length modulators $WzzB_{SF}$ and $WzzB_{pHS2}$ were assessed. Anti-IcsA served as a control that minicells were derived from polar material. (D) LPS was isolated from the standardized whole membrane samples of whole-cells and minicells from both log-phase and stationary phase cultures and analyzed by SDS-PAGE and silver staining. $S = {}^{S}LPS$, $VL = {}^{VL}LPS$.

Figure 3: Removal of LPS O-antigen does not change IcsA surface distribution. IcsA
 expression levels and surface distributions were investigated in both single *icsA* copy and

Page 23 of 27

FEMS Microbiology Letters

26	multi- <i>icsA</i> copy conditions. Panels $(A - C)$ show data generated using wild type <i>S. flexneri</i>
27	2457T, $\Delta icsA$ (RMA2041), and $\Delta rmlD$ (ETRM230) strains, and panels (D – F) from strains
28	$\Delta icsA$ and $\Delta icsA \Delta rmlD$ (RMA2043) complemented with either pIcsA or base vector pBR322
29	(Bolivar et al., 1977) (see Table 1). 'S' and 'R' denote smooth-LPS (with O-antigen) and
30	rough-LPS (without O-antigen) respectively. Anti-IcsA Western immunoblots (A and D)
31	show IcsA protein expression levels in total bacterial protein samples ($n = 3$). Chaperone
32	DnaK served as a loading control. (B and E) Phase (top) and anti-IcsA IF micrographs
33	(bottom) of representative bacteria. Fluorescence intensities for panels C and F are average
34	pixel grey levels scaled equally relative to each strain. Each image is 4 μ m by 4 μ m. (C and
35	F) IF experiments were repeated ($n = 3-7$) and IcsA surface detection (i) and surface
36	distributions (ii) were measured for each IcsA expressing strain on a population basis. The
37	quotients of the R-LPS and S-LPS IcsA distributions are also shown in (iii) with mean mid-
38	cell indicated by the vertical line and red line indicating fitted linear functions ($R^2 = 0.3974$
39	and 0.8924 for C_{iii} and F_{iii} respectively). OP = old pole, MNP = mean new pole, ns = not
40	significant. Differences in mean surface detection for (i) were analyzed by two-tailed t-test,
41	and differences in distribution between OP, MNP and mid-cell in (iii) analyzed by one-way
42	ANOVA (** = $p < 0.01$, *** = $p < 0.001$, **** = $p < 0.0001$).
43	

Figure 1: Models of IcsA surface polarity augmentation by LPS (2x final width and hight)

(A) Lateral diffusion model. It has been proposed that R-LPS *Shigellae* (without O-antigen; Oag) has a higher membrane (M) fluidity causing in IcsA (red) deposited at the pole to defuse away from the pole and down the lateral edge. (B) Model of asymmetrical masking due to O-antigen modal lengths distribution. To optimize the pathogenic role of IcsA in recruiting host actin polymerizing complexes at the pole, it is thought that LPS O-antigen chain lengths may be useful in optimizing IcsA exposure at the pole by the use of ^SLPS (medium blue) at the pole and ^{VL}LPS (light blue) on the lateral edges to restrict IcsA exposure. The red cross depicts the notion that LPS O-antigen chains can inhibit access of antibodies to IcsA via steric hindrance. 95x57mm (300 x 300 DPI)

Figure 2: Lateral and polar LPS has equivalent modal lengths (2x final width and hight)

(A) Phase micrographs of live *S. flexneri* showing wild type (2457T, top) and *minD*- phenotype (MG292, bottom). Arrowheads in the latter indicate free minicells and minicells budding from whole-cell poles. All scale bars represent 10 μm. (B) Phase micrographs of purified whole-cells and minicells from the *minD*-strain. (C) Western immunoblot analysis of standardized whole membrane samples extracted from purified whole-cells and minicells. Levels of both LPS-Oag modal length modulators WzzB_{SF} and WzzB_{pHS2} were assessed. Anti-IcsA served as a control that minicells were derived from polar material. (D) LPS was isolated from the standardized whole membrane samples of whole-cells and minicells from both log-phase and stationary phase cultures and analyzed by SDS-PAGE and silver staining. S = ^SLPS, VL = ^{VL}LPS. 336x200mm (232 x 232 DPI)

2!

2.5

MNF

Figure 3: Removal of LPS O-antigen does not change IcsA surface distribution (2x final width and hight)

IcsA expression levels and surface distributions were investigated in both single icsA copy and multi- icsA copy conditions. Panels (A – C) show data generated using wild type *S. flexneri* 2457T, AicsA (RMA2041), and *ArmID* (ETRM230) strains, and panels (D – F) from strains *AicsA* and *AicsA ArmID* (RMA2043) complemented with either pIcsA or base vector pBR322 (Bolivar et al., 1977) (see Table 1). 'S' and 'R' denote smooth-LPS (with O-antigen) and rough-LPS (without O-antigen) respectively. Anti-IcsA Western immunoblots (A and D) show IcsA protein expression levels in total bacterial protein samples (n = 3). Chaperone DnaK served as a loading control. (B and E) Phase (top) and anti-IcsA IF micrographs (bottom) of representative bacteria. Fluorescence intensities for panels C and F are average pixel grey levels scaled equally relative to each strain. Each image is 4 µm by 4 µm. (C and F) IF experiments were repeated (n =

3-7) and IcsA surface detection (i) and surface distributions (ii) were measured for each IcsA expressing strain on a population basis. The quotients of the R-LPS and S-LPS IcsA distributions are also shown in (iii) with mean mid-cell indicated by the vertical line and red line indicating fitted linear functions (R2 = 0.3974 and 0.8924 for C_{iii} and F_{iii} respectively). OP = old pole, MNP = mean new pole, ns = not significant.

Differences in mean surface detection for (i) were analyzed by two-tailed t-test, and differences in distribution between OP, MNP and mid-cell in (iii) analyzed by one-way ANOVA (** = p < 0.01, *** = p < 0.01, *** = p < 0.01, ***

$$0.001, **** = p < 0.0001$$
.

