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Substantial amounts of nutrients are lost from soils via leaching and as gaseous 21 

emissions. These losses can be environmentally damaging, and expensive in terms of 22 

lost agricultural production. Plants have evolved many traits to optimize nutrient 23 

acquisition, including the formation of arbuscular mycorrhizas (AM). There is 24 

emerging evidence that AM have the ability to reduce nutrient loss from soils by 25 

enlarging the nutrient interception zone and preventing nutrient losses after rain 26 

induced leaching events. Until recently, this important ecosystem service of AM had 27 

been largely overlooked. Here we review the role of AM in reducing nutrient losses and 28 

conclude, that this role cannot be ignored if we are to increase global food production 29 

in an environmentally sustainable manner. 30 

 31 

32 



 

 

Nutrient losses from soil 33 

Crops take up approximately only half of the nutrients in applied chemical fertilizers, with the 34 

remainder therefore at risk of being lost to production [1]. Nutrients that are mobile in soil, 35 

such as nitrate (NO3
-) and sulphate (SO4

2-), can be readily leached below the root zone of 36 

plants. Relatively immobile nutrients, such as phosphorus (P), potassium (K) and Zinc (Zn), 37 

can also be lost via leaching or erosive processes, when bound to organic matter or colloids, 38 

or precipitated with organo-mineral complexes and chelates (see [2]). Nutrient losses via 39 

leaching can be substantial, with up to 160 kg nitrogen (N) and up to 30 kg of P per hectare 40 

lost annually due to leaching and surface run off in some areas [3, 4]. Leached nutrients can 41 

contaminate ground water and waterways, leading to eutrophication, algal blooms and the 42 

loss of terrestrial and aquatic biodiversity [5]. In addition to losses via leaching, N can also be 43 

lost from soil as the potent greenhouse gas nitrous oxide (N2O, see glossary), and also as di-44 

nitrogen gas (N2) [6-9], with losses of up to 143 kg of N per hectare [10], although rates vary 45 

among studies [11]. An estimated 150 Tg of N are exported from soil annually, with plant 46 

uptake, leaching, soil erosion and gaseous N losses accounting for 55 %, 16 %, 15 % and 14 % 47 

of losses respectively [12]. Together, these nutrient loss pathways can be expensive in terms 48 

of lost potential crop production, and environmentally damaging. 49 

 Plants have an important role to play in reducing soil nutrient losses. In addition to 50 

direct root uptake of nutrients, the vast majority of terrestrial plant species can also acquire 51 

nutrients by forming associations with arbuscular mycorrhizal fungi (AMF) [13]. Hyphae of 52 

AMF can extend beyond the root surface by more than 10 centimeters [14, 15], with common 53 

hyphal densities of >10 m of hyphae per gram of soil [14, 16, 17]. This extensive absorbing 54 

network, which extends beyond the rhizosphere nutrient depletion zones that form around 55 

roots, allows arbuscular mycorrhizas (AM) to access a larger volume of soil than roots not 56 

colonized by AMF. There is clear evidence that AMF can help plants acquire nutrients 57 

including P, Zn, ammonium (NH4
+), nitrate (NO3

-), copper (Cu), potassium (K), and others [18-58 



 

 

20]; for example, up to 90% of plant P and 20% of plant N can be provided by AMF, although 59 

estimates vary among studies and study systems. The uptake and transfer of nutrients from 60 

organic sources to plants has also been reported [21-23]. 61 

In addition to improving plant nutrient acquisition, there is emerging evidence that AM 62 

have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone 63 

and to prevent nutrient losses after rain induced leaching events. Until recently, this 64 

important ecosystem service of AM had been largely overlooked. Here we review recent 65 

evidence on the role of AM in reducing soil nutrient losses. We discuss the mechanisms and 66 

present a conceptual framework showing under which conditions the reduction of nutrient 67 

losses by AM is expected to be most prevalent.  68 

The premise of this review is that AM can reduce the risk of nutrient loss by enhanced 69 

nutrient immobilization (compared to non-mycorrhizal plants), or by altering soil nutrient 70 

and water cycling processes in ways that favor the retention of nutrients in the soil (Figure 1). 71 

We focus on inorganic and organic N and P compounds. Specifically, we review the role of AM 72 

in reducing (i) N loss via leaching of inorganic and organic N-containing compounds, and as 73 

the potent greenhouse gas N2O; and (ii) P loss via leaching of inorganic and organic P-74 

containing compounds. 75 

We use the term ‘non-mycorrhizal’ when referring  to plants that have the capacity to form 76 

AM, but have not done so. Further, we define nutrient loss as nutrients moving beyond root 77 

zones. 78 

  79 



 

 

The role of AM in reducing N loss from the soil 80 

Arbuscular mycorrhizal fungi can take up N as NH4
+ [24, 25], NO3

- [7] and as amino acids [21, 81 

22]. There is also some evidence to suggest that AMF may be able to acquire nutrients from 82 

organic matter patches [26, 27]; although, it is likely that this is due to uptake of inorganic N 83 

following organic matter mineralization (see [13] for recent discussion). While the molecular 84 

basis of N uptake by AMF has not been fully elucidated, the identification of fungal glutamine 85 

synthase and nitrate reductase genes in AMF [28, 29] further support the role of AMF in 86 

assimilating mineral forms of N [30]. Arbuscular mycorrhizas may also impact upon soil N 87 

transformations and cycling (see below, and [30], for recent review). Although the 88 

contribution of AM to plant N acquisition can be variable, with some studies showing little or 89 

no contribution of AM to plant N acquisition [e.g. 31, 32, 33], it is clear that AM can enhance 90 

plant N acquisition in many situations [30], which in turn may help reduce N loss from the soil 91 

(see below and Table 1).  92 

 AM can reduce N loss via leaching (Table 2), with reductions in leaching of NH4
+ 93 

and/or NO3
- having been reported [e.g. 34, 35]. These reductions in N loss via leaching have 94 

been accompanied by enhanced plant N assimilation, and sometimes, but not always, a 95 

reduction in leachate volume [34-36]. Reductions in N loss via leaching associated with the 96 

formation of AM, do however vary with plant species; for example, one study found that the 97 

formation of AM resulted in an increase in the growth and nutrient uptake of two fast growing 98 

ornamental perennial plants, but that there was a reduction in the concentration of NO3
-, NH4

+ 99 

with only one of the species [36]. In another study using large outdoor-lysimeters, the 100 

presence of AM together with other soil biota contributed strongly to increased N and P 101 

contents of maize, whereas the leaching of total N was strongly reduced by up to a half [37]. In 102 

this study a significant reduction (45 %) in the leaching dissolved organic N compounds was 103 

also found. 104 



 

 

The impact of AM on N leaching can also be influenced by soil type. For example, in a 105 

study [6] investigating the effect of AM on nutrient leaching in two different soil types and 106 

under NH4
+ or NO3

- dominated conditions, it was found that while NH4
+ leaching was 107 

constantly reduced, the leaching of dissolved organic N compounds was reduced in one soil 108 

type only. Further, NO3
- leaching was not affected by AMF in this study. The importance of AM 109 

in reducing N loss via leaching has also been explored at larger scales. For example, a large 110 

scale correlative field study showed that AMF abundance was a strong predictor of total N 111 

leached (reduced N loss) in agricultural land-use systems [38]. However, apart from this 112 

example, field evidence for the potential for AM to reduce N loss via leaching is scarce. While 113 

there are clear examples of AM reducing the loss of N via leaching, , at least one study showed 114 

the opposite effect [39]. Interestingly, in this study red clover was much more abundant in 115 

mycorrhizal grassland microcosms and the amount of NO3
- leaching may be related to the fact 116 

that the clover was fixing N (which could subsequently be lost by leaching). Finally, no 117 

association was found between the presence of AMF and N leaching in another microcosm-118 

based model grassland system [40]. 119 

The cycling of N in soils is rapid and dominated by a series of microbially-mediated N 120 

transformations [41]. This presents a challenge in the study of the role of AMF in soil N cycling. 121 

This is because the establishment of non-mycorrhizal treatments in experiments usually 122 

involves the sterilization of the soil and back inoculation with bacterial filtrates. While such an 123 

approach does provide a soil microbial community similar to that of non-sterlised soils (i.e. 124 

AM treatments), some time is required for microbial communities to equilibrate [34, 35, 42]. 125 

To overcome this issue, the authors of [43] compared N loss via leaching from cores 126 

containing either a mycorrhizal defective tomato (Solanum lycopersicum) mutant, or its 127 

mycorrhizal wild-type progenitor. It was found that mycorrhizal tomato root systems 128 

dramatically reduced NO3
- loss via leaching. This large reduction in N loss may have been due 129 



 

 

to either an inherently high efficiency of AM formed by tomato to intercept N, or the impact of 130 

AMF on soil microbes involved in N cycling. The potential to use mutants in field studies of AM 131 

functioning (see also [7, 44, 45]) is one area that is open to further investigation. 132 

 Although N losses from soil due to denitrification can be substantial [11, 46, 47], only a 133 

few studies have investigated AM effects on soil N2O and/or N2 emissions, and results are 134 

variable. For example, in a field experiment, using a mutant based approach to control for the 135 

formation of AM, the formation of AM enhanced the capacity of plants to immobilize a 136 

recently applied pulse of 15NO3
-, but had no impact on soil N2O emissions [7]. By contrast, in 137 

another study comprising two independent greenhouse experiments using either a 138 

mutant/wild-type pair of tomatoes (different from those used by [7]) or sterilized and re-139 

inoculated soil to manipulate the presence of AMF [44], fluxes of N2O were 33% and 42% 140 

higher where plants had formed a reduced or no association with AMF, in the two 141 

experiments respectively. Finally, in a recent glasshouse study using the same tomato 142 

genotypes used in [7], AM reduced soil N2O emissions at high soil moisture [9]. This study 143 

suggests that control over N2O emissions by AM plants is related to higher use of soil water 144 

(which will affect rates of dentrification and thence, N2O emissions), rather than increased N 145 

uptake. Given the importance of N2O as a greenhouse gas, this is an area ripe for further 146 

investigation. 147 

While it is clear that AM can impact upon N loss from soils, the underlying mechanisms 148 

are less clear. Enhanced rates of N immobilization by AM will reduce the size of the mineral N 149 

pools in the soil, thereby reducing the risk of N loss via leaching, or the amount of N available 150 

to be denitrified (Figure 1). In the case of leaching, the preferential uptake of NH4
+ by AMF 151 

[24] is likely to be especially important in this regard as it not only reduces the pool of NH4
+ 152 

that can be leached, but it also reduces the pool of NH4
+ available to be transformed into NO3

- 153 

(via nitrification) which is much more mobile in soil. However, preferential uptake of NH4
- 154 

over NO3
- may not always be the case [see 6], and AM can also assimilate N in organic forms 155 



 

 

[21, 22]. For gaseous N losses, reducing the pool of NO3
- in the soil will decrease the risk of N 156 

loss as N2O (or N2) generated via denitrification. Similarly, reducing the soil NH4
+ pool may 157 

also be important as some N2O is generated in the process of nitrification. 158 

Arbuscular mycorrhizas can improve soil structure and soil water retention [45, 48]. In 159 

doing so, AM could help reduce N losses by reducing the volume of soil leachate (Figure 1). 160 

Conversely, improvements in soil structure associated with formation of AM may help to 161 

retain water in the root zone, which is not taken up by plants and/or AMF and may promote 162 

the N2O producing process of denitrification under some circumstances, as rates of 163 

denitrification are strongly moisture dependent. Some studies show an AM-mediated 164 

reduction in leachate volume [35, 49], whereas others do not [34, 43]. Arbuscular 165 

mycorrhizas may also affect soil N2O emissions via enhanced water use by AM plants [9]. 166 

Arbuscular mycorrhizas may also reduce N loss by competing with organisms involved in the 167 

soil N cycle (e.g. nitrifiers and denitrifiers) for both NH4
+ and NO3

- [see 30]. The abundance of 168 

microbes involved in N mineralization may also be impacted by AMF [50, 51], and so also 169 

need to be taken into consideration. Finally, whereas carbon (C) exudation from plant roots 170 

can be reduced in presence of AMF [52], AMF exude C from their extraradical hyphae [53]. 171 

This C may help to improve soil structure as well as providing an energy source for N cycling 172 

microorganisms, including denitrifiers. This, however, is yet to be specifically tested. Finally, 173 

the presence of AMF in soil can induce shifts in soil microbial communities, including 174 

organisms involved in N cycling processes, e.g. denitrification [54], which could also affect N 175 

losses from soil through denitrification and leaching.  176 

 Irrespective of the underlying mechanisms, AM can impact upon soil N loss. Although 177 

the mechanisms that underpin AM impacts on soil N losses are likely to be multifarious and 178 

complex, it will be important to understand them if we are to make predictions about AM 179 

impacts on N losses, be it in the context of leaching or N2O (and N2) emissions.  180 

 181 



 

 

The role of AM in reducing P loss from the soil 182 

Phosphorus, is relatively immobile in soil compared to N. Usually only a small percentage of 183 

soil P is available to plants, while up to 90% of P can be effectively rendered unavailable via 184 

precipitation reactions in the soil or sorption to mineral soil particles and/or organic matter 185 

[55-57]. Therefore, P fertilizers are often applied in excess and soils are accumulating P [58, 186 

59]. Although loss of P via leaching is low compared to that of N, it can be especially important 187 

in soils with a low P sorption capacity [60, 61]. Furthermore, small amounts of P leached may 188 

have a strong environmental impact, with P entering freshwater bodies considered the main 189 

cause of eutrophication [62-64]. 190 

 Arbuscular mycorrhizas are best known for their capacity to enhance plant P 191 

acquisition. The molecular and physiological basis of the role of AM in enhancing plant P 192 

acquisition is very well understood, with P transporter genes in AMF, and genes involved in 193 

plant P transport whose expression can be affected by the formation of AM (in a number of 194 

plant species), having been identified (see [13]). Given that P loss can be significant in some 195 

soils, and that AMF can acquire large amounts of P, it follows that AM are likely to play a 196 

significant role in reducing P loss via leaching in soils susceptible to P leaching. Recent studies 197 

are beginning to show that AM have an important role to play in reducing P loss via leaching 198 

(see below and Table 1) 199 

 Arbuscular mycorrhizas can improve plant P acquisition and reduce inorganic P loss 200 

via leaching (Table 2) [6, 34-36, 49]. These effects are generally most pronounced where soil 201 

P is low and levels of AM colonization are generally higher [34, 35], although this is not always 202 

the case [36]. In one study [65], no effects of AM on P leaching in three soils were found, but 203 

substantial reductions in three other soils were. Importantly, the amount of P leached was 204 

negatively correlated with the amount of fungal hyphae in soil. AMF are capable of reducing 205 

not only leaching of reactive, plant-available P compounds, but also of unreactive P 206 

compounds (e.g. organic P, polyphosphates and P bound to particulate inorganic material) [6]. 207 



 

 

 It is important to note that AM do not always reduce P loss via leaching. For example, 208 

in a lysimeter study [37], P losses were slightly higher in the ‘enhanced soil-life treatment’, 209 

which included AMF, compared to where AMF were not present. Interestingly, this was 210 

despite the fact colonization of roots by AMF (measured as percent colonization) was strongly 211 

positively related to plant biomass and P contents and that the mobilization of soil P 212 

resources was strongly increased in the ‘enhanced soil-life treatment’ treatment. Compared to 213 

the strong increase in plant P contents, the amount of P leached was very small and the 214 

authors concluded that the enhanced losses might be a by-product of the massively increased 215 

mobilization of soil P by AMF. While total P leaching was higher in presence of AMF, again 216 

leaching of non-reactive P compounds was reduced. This example highlights the importance 217 

of considering nutrient losses in different chemical forms, as is also the case for N (see above). 218 

 We consider the ‘scavenging’ for inorganic P beyond rhizosphere depletion zones, to be 219 

the primary mechanism by which AM reduce the risk of P loss via leaching [14, 66] (Figure 1). 220 

AM may also indirectly influence P surface runoff by stimulating plant P acquisition and by 221 

reducing soil P availability. While acquisition of P from organic sources and from insoluble 222 

inorganic P compounds may explain the reductions in the leaching of unreactive P compounds 223 

[6], more needs to be known about the role of AMF in acquiring P from organic and other soil 224 

sources before firm conclusions can be drawn. Reduced leaching of organic P compounds 225 

could also be due to enhanced uptake of inorganic P by AMF, thereby reducing the amount of 226 

P available to be transformed into organic forms by other soil biota. While AM effects on 227 

leaching of dissolved organic P, and P associated with colloids and other particulate matter 228 

are not well understood, their contribution to leaching is captured in measures of leached 229 

total P. We also note that effects of AMF on soil structure and water retention may also be 230 

important in reducing soil P loss via leaching, as with N leaching (see above). A reduction in 231 

the magnitude of AM effects on P leaching, with increasing soil P supply, are consistent with 232 

prior studies showing that the formation and functioning (at least in terms of P acquisition) of 233 



 

 

AM is reduced as soil P is increased. 234 

 235 

Arbuscular mycorrhizas and nutrient losses: the way forward 236 

Arbuscular mycorrhizas can have a significant role in reducing the loss of N and P from soil. 237 

This is an important but largely overlooked ecosystem service provided by AM. We anticipate 238 

that these processes could be especially relevant in sandy soils, irrigated farming systems, 239 

high input farming systems, nutrient rich natural systems, and points in the landscape where 240 

water and nutrient fluxes are high (e.g. riparian zones). Maintaining high levels of AMF in soils 241 

will be important, especially in agroecosystems where the use of fungicides, fumigants, 242 

inclusion of non-mycorrhizal crops such as oilseed rape or sugar beet, prolonged fallow 243 

periods, and soil cultivation can reduce the inoculum potential of the soil. Furthermore, excess 244 

application of P fertilizers may be especially problematic in this context, as in addition to the 245 

higher levels of nutrients being applied, AM colonization of roots is reduced with increased P 246 

supply [67-69]. To this end, a reduction in the formation of AM is likely to be one of the 247 

reasons for greater levels of P loss from fertilized ecosystems [35]. In Fig. 2, the relationships 248 

between soil management intensity and nutrient levels, AM abundance and total nutrient 249 

losses are integrated into a conceptual framework to identify the situation where AM-250 

mediated reduction in nutrient losses is maximized. With higher management intensity and 251 

nutrient additions, total nutrient losses increase, while AM abundance is reduced. We expect 252 

the relative contribution of AM to the reduction of nutrient losses to be highest at low nutrient 253 

availability when effects of AM are expected to be highest. However, in terms of total amounts, 254 

the contribution of AM to the reduction of nutrient losses will be highest at intermediate 255 

management intensity and soil fertility, where nutrient losses would be expected to occur in 256 

significant amounts but AM abundance is still sufficient to reduce nutrient losses (Fig. 2). 257 

A further increase in management intensity may on one hand lead to higher nutrient losses 258 

because of excess nutrients in soil, and on the other hand, because AM abundance is further 259 



 

 

reduced. Ultimately, the goal should be to “push” the system in such a way that the 260 

stimulation of AMF will reduce the total amount of nutrient losses. 261 

 It has been proposed, that nutrient stoichiometry, especially the N/P ratio, can have a 262 

significant impact on AM functioning (see [70], for review). In these studies, the functioning of 263 

AM is evaluated by looking at effects on plant growth and nutrition. It is suggested that AM 264 

benefits for plant growth and nutrition are highest under P limiting conditions, but with 265 

sufficient availability of N. However, the effects of nutrient stoichiometry on nutrient leaching 266 

may be more complex and may, in addition to effects on plant nutrition, also be influenced by 267 

the ability of AM to directly or indirectly immobilize nutrients (e.g. in AM fungal hyphae or 268 

through effects on soil microbial communities) and to reduce soil nutrient availability. 269 

Nevertheless, it seems reasonable to suggest that improved AM functioning through adequate 270 

nutrient stoichiometry could also maximize AM effects on nutrient losses from soil; however, 271 

this remains to be tested. 272 

Further research efforts should be directed towards the identification of conditions 273 

and measures suitable to maximize AM benefits in agroecosystems. Equally, it will also be 274 

important to consider the impact of other management practices that help to reduce nutrient 275 

losses, such as the use of cover crops and optimizing the timing of fertilizer application. In 276 

addition to focusing on the fate of inorganic N and P losses in mineral N forms, it is clear that 277 

there is also a need to consider losses in organic forms. The processes underlying the 278 

involvement of AM in the reduction of losses of organic nutrients require further investigation 279 

as very little is known about the utilization of organic compounds by AM and whether these 280 

effects are direct or indirect via associated microorganisms. 281 

At several points in the review we noted the paucity of field-based studies of the role of 282 

AM in reducing nutrient loss. Field based studies, however, present a number of challenges. 283 

For example, for measurement of nutrient loss via leaching in the field it will be necessary to 284 

use techniques that allow collection of leachate with a minimum of disturbance to the soil, 285 



 

 

such as the use of anion- and cation-exchange resins, lysimeters or soil water samplers. 286 

Establishing non-mycorrhizal treatments in the field is also a challenge, although it can be 287 

overcome using a genotypic approach to controlling for the formation of AM [42, 45]. Further, 288 

we suggest that all of these experimental approaches will be particularly valuable when used 289 

in conjunction with isotope labeling techniques (e.g. [7]). Although not considered here, 290 

temporal asynchrony may be an important factor in field-based studies. For example, in 291 

deciduous systems most nutrient losses occur in autumn, when plant and mycorrhizal activity 292 

is low. However, if AM efficiently scavenge soil nutrients in times of high activity, this should 293 

enhance the nutrient uptake capacity of soils as more nutrient exchange sites are available. 294 

Hence, AM effects on nutrient losses in times of low mycorrhizal and plant activity could still 295 

be expected through indirect mechanisms. Moreover, there is compelling evidence that AM 296 

interact with a wide range of other soil organisms involved in nutrient cycling processes. Due 297 

to the reductionist nature of many experiments studying AM effects on nutrient cycling (e.g. 298 

using sterilized soils), there is a strong need to further investigate interactions of AMF with 299 

other soil biota, and test how they jointly influence nutrient losses from soil. Taken together, 300 

we consider the potential for AM to reduce nutrient loss from soils an important ecosystem 301 

service that is ripe for further detailed mechanistic investigation. 302 
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Glossary 468 

AM: arbuscular mycorrhiza; association formed between the roots of most terrestrial plant 469 

species and AMF. 470 

AMF: Arbuscular mycorrhizal fungi; Fungi belonging to the Glomeromycota that form AM 471 

with the roots of most terrestrial plant species. 472 

Biogeochemical cycling: the chemical, physical, geological, and biological processes and 473 

reactions that govern the cycling of nutrients and carbon in the environment. 474 

Leaching: The drainage of water containing solutes away from soil by the action of 475 

percolation. 476 

N2O: Nitrous oxide; a potent greenhouse gas. 477 

Denitrification: the microbial transformation of NO3
- to N2O and ultimately N2. 478 

Nitrification: the microbial transformation of NH4
+ to NO3

-. 479 

 480 

Figure Legends 481 

Figure 1. Overview of potential impacts of mycorrhizal versus non-mycorrhizal plants on soil 482 

nutrient loss pathways.  483 

Starting nutrient pool1 may be comprised of inorganic and/or organic N and P containing 484 

compounds. Immobilization of nutrients2 and water uptake3 is enhanced when plants are 485 

colonized by AMF. As a consequence, the pool of nutrients at risk of being leached4 will be 486 

reduced with mycorrhizal plants. At the same time, AMF can improve soil structure5, resulting 487 

in a reduction in leachate volume. As a consequence of all of these factors, we anticipate more 488 

nutrients to be leached6 where plants are non-mycorrhizal. Similarly, we expect gaseous N 489 

loss7 to be enhanced when plants are non-mycorrhizal due to reduced plant N assimilation. 490 

Although not represented in this figure, effects of forming AM on plant biomass may also be 491 

important (see text). N.B. Size of arrows indicate direction of change (i.e. increased, decreased 492 



 

 

or similar), but are not drawn to scale. 493 

Figure 2. Hypothesized relationship between soil nutrient levels, and total nutrient loss, AM 494 

colonization, and AM-mediated reduction in nutrient loss.  495 

The lag in the first panel represents the situation where nutrient binding sites are 496 

unsaturated. In the second panel the small increase in colonization is consistent with studies 497 

suggesting that when soil P is low, low levels of P supply can stimulate colonization. The third 498 

panel suggests that AM-mediated reductions in nutrient loss will be quantitatively greatest at 499 

intermediate levels of management intensity and nutrient addition, and where levels of AM 500 

colonization are not minimized. The relative contribution of AM to reducing nutrient losses is 501 

expected to be highest at the low end of soil nutrient availability (not shown). 502 
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Table 1. Soil N and P compounds and their mobility, sources, transformations and potential impacts of arbuscular mycorrhizas (AM) upon their loss from soil 

 

Nutrient 

compound 

 

Soil Mobility 

Nutrient cycling processes  

Involvement of AM fungi Sources/inputs Transformations/losses 

NH4+ Low  Organic matter mineralization/ 

ammonification; Dissimilatory nitrate reduction; fertilizer 

addition 

Plant and microbial immobilization; bound to soil particles or 

formation of precipitates/complexes, which may be leached; 

Nitrification yielding NO3-  

Immobilized by AMF. Impacts of AMF on soil water 

relations 

NO3- High  Nitrification; fertilizer addition Plant and microbial immobilization; leaching; denitrification giving 

rise to gaseous forms of N; Dissimilatory nitrate reduction. 

Immobilized by AMF, but less so than NH4+. Impacts 

of AMF on soil water relations 

Dissolved organic N Variable Organic matter decomposition; extracellular enzyme 

production; root exudation, manure application, animal and 

microbial excretion 

Mineralization; Plant and microbial immobilization; Leaching AMF may promote mineralization and can 

immobilize the product (NH4+). Direct uptake 

PO4- Very low  Organic matter mineralization; fertilizer addition 

Desorption from soil particles 

Solubilisation of Phosphate-minerals 

Plant and microbial immobilization; bound to soil particles or 

formation of precipitates/complexes, which may be leached 

Is often strongly immobilized by AMF. Impacts of 

AMF on soil water relations 

 

Dissolved organic P, 

Complex-bound P. 

Sorbed P 

Variable Organic matter decomposition; mineral weathering, 

extracellular enzyme production; root exudation, manure 

application, animal and microbial excretion 

Mineralization; Plant and microbial immobilization; Leaching AMF promote mineralization and can immobilize 

the product. Involvement in solubilisation of non-

plant available compounds. Impacts of AMF on soil 

water relations 
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Table 2. Overview of studies investigating effects of arbuscular mycorrhizas (AM) on soil N and P losses via leaching 

Experimental system AM effects on N and P loss via leaching  Refs 

Clover in microcosms Experiment 1.  Approx 2.7 times reduction in content of P leached with AM under low P conditions. No difference where soil P was high. Experiment 2.  

Approx 2.4 times reduction in content of P leached with AM under low P conditions. No difference where soil P was high. 

[49] 

Grassland microcosm 7.5% and 60% reductions in loss of NH4+ and inorganic P respectively, from AM microcosms. No change in NO3- with AM. [35] 

Pasture grass microcosm Approx. 7.5, 3 and 1.4 times reductions in NH4+, NO3- and P concentrations in leachate, respectively. [34] 

Ornamental perennial plants and Rhus integrifolia, in 

pots 

Up to a 65-80% reduction in NH4+, NO3- and inorganic P content of leachates with mycorrhizal Encelia californica, but not Rhus integrifolia. [36] 

Mycorrhiza defective and mycorrhizal tomato 

genotypes. 

40 times reduction in N loss via leaching of NO3-. No change in NH4+ loss via leaching with AM. [43] 

Pots with maize No effects of AM on P leaching in three soils. 40% to two-fold reduction of P leaching in three other soils. P leaching negatively correlated to AMF hyphal 

length in soil. 

[65] 

Agricultural crop rotation grown in outdoor-

lysimeters 

24.3% reduction in total N leached with AM during two growing seasons. Increase in P leached with AM. [37] 

Grassland microcosms with two different soil types Reduction by 31 and 24 % of total and unreactive P leaching, respectively, with AM. Up to 90% of P leached in unreactive form. NH4+ leaching reduced by 

69% with AM, reduction of DON leaching by 24 % with AM in one soil type only. No effect on NO3 leaching. 

[6] 

Grassland microcosm with red clover 40% increase and decrease in NO3- and NH4+ leaching respectively, with AM. 20% increase of unreactive P leaching with AM, and no effect on dissolved 

inorganic P. 

[39] 
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