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Abstract

This paper outlines a hierarchical Bayesian model for huoatagory learning
that learns both the organization of objects into categoréd the context in
which this knowledge should be applied. The model is fit totipld data sets,
and provides a parsimonious method for describing how hgnhearn context
specific conceptual representations.

1 Introduction

Human knowledge and expertise is often tied to particulatexis. The superior memory that chess
masters have for chessboard configurations is limited tosgiée games, and does not generalize
to arbitrary groupings of pieces [1]. Expert firefighters malkfferent predictions about the same
fire depending on whether it is described as a back-burn orlee-toontrolled fire [2]. In part,
this context specificity reflects the tendency for people iganize knowledge into independent
“bundles” which may contain contradictory information,dawhich may be deemed appropriate
to different contexts. This phenomenon is calletbwledge partitioning2—6], and is observed
in artificial category learning experiments as well as reafltvsituations. When people learn to
classify stimuli in an environment where there are systen@tanges in the “context” in which
observations are made, they often construct categoryseptations that are tightly linked to the
context, and only generalize their knowledge when the coigeleemed appropriate [3, 4, 6].

Context induced knowledge partitioning poses a challengeddels of human learning. As noted in

[4] many models cannot accommodate the effect, or, as disduater in this paper, are somewhat
unsatisfying in the manner that they do so. This paper egpltire possibility that Bayesian models
of human category learning can provide the missing explanaflhe structure of the paper is as
follows: first, a context-sensitive Bayesian categoryriéay model is described. This model is

then shown to provide a parsimonious and psychologicalpeajing account of the knowledge

partitioning effect. Following this, a hierarchical exsgéon is introduced to the model, which allows

it to acquire abstract knowledge about the context spegifidithe categories, in a manner that is
consistent with the data on human learning.

2 Learning categories in context

This section outlines a Bayesian model that is sensitiieddearning context. It extends Anderson’s
[7] rational model of categorization (RMC) by allowing theodel to track the context in which
observations are made, and draw inferences about the adledhtext plays.

2.1 The statistical model

The central assumption in the RMC is that the learner seeksdganize his or her observations
into clusters. Ifz; denotes the cluster to which thia observation is assigned, then the joint prior



distribution overz,, = (z1, ..., z,) can be specified via the Chinese restaurant process [8],

z,|a ~ CRA(@). (1)
Each cluster of observations is mapped onto a distributien features. Feature values are denoted
by the vectox; = (x;1, ..., xiq), the values of théth observation for each of thefeatures. When

feature values vary continuously, the RMC associates:theluster with a multivariate Gaussian
that has mean vectar;, and covariance matriX;. Setting standard conjugate priors, we obtain

X; | uk,Ek,zi =k ~ Norma(uk,Ek)
i | Bk, ko, Ho ~ Normalpo, X /o) (2)
. | Ao, ~ Inv-Wishar{vy, Ao ')

This is a minor generalization of the original model, aslinvak any covariance matrix (i.e., symmet-
ric positive definiteX) and does not require the restrictive assumption that thrikis dimensions
are independent (which would for@ to be diagonal). While independence is reasonable when
stimulus dimensions are separable [9], knowledge pantitgp can occur regardless of whether di-
mensions are separable or integral (see [6] for detailghesaore general formulation is useful.

Inthe RMC, labels are treated in the same way as discretexddtatures. Each cluster is associated
with a distribution over category labels.4f denotes the label given to thigh observation, then

b | oz =k, 0, ~ Bernoulli(fy) 3)
0y | ﬁ ~ Beta(ﬁ,ﬁ)

The g parameter describes the extent to which items in the samteclare allowed to have different
labels. If there are more than two labels, this generalzesDirichlet-multinomial model.

Equations 1-3 define the standard RMC. The extension to damditext dependence is straight-
forward: contextual information is treated as an auxilifagture, and so each cluster is linked to
a distribution over contexts. In the experiments consididéager, each observation is assigned to
a context individually, which allows us to apply the exaainsamodel for contextual features as
regular ones. Thus a very simple context model is sufficient:

¢i | z=k ¢ ~ Bernoulligy) 4)
o | ~ Betdy,7)

The context specificity parameteris analogous t@ and controls the extent to which clusters can
include observations made in different contexts. In moreegal contexts, a richer model would be
required to capture the manner in which context can vary.

Applying the model requires values to be chosendfpB, v, i, Ao, v andxg, most of which can
be fixed in a sensible way. Firstly, since the categories d@werlap in the experiments discussed
here it makes sense to set= 0, which has the effect of forcing each cluster to be assatiatdy
with one category. Secondly, human learners rarely havagtprior knowledge about the features
used in artificial category learning experiments, expreébyesetting<o = 1 andvy = 3 (v is larger

to ensure that the priors over features always has a welletkfinvariance structure). Thirdly, to
approximate the fact that the experiments quickly revealfthl range of stimuli to participants,
it makes sense to sefy and A, to the empirical mean and covariances across all traingrgst
Having made these choices, we may restrict our attentien(tbe bias to introduce new clusters)
and~ (the bias to treat clusters as context general).

2.2 Inference in the model

Inference is performed via a collapsed Gibbs sampler, iategy oute, 6, n andX and defining a
sampler only over the cluster assignment3o do so, note that
P(zi = klx,£,¢c,z_;) o P(x;,0;,cilx_i, b_i,c_i,Z_i,z; = k)P(z; = k|z_;) (5)
= P(Xi|X_i, Z_;,2; = k)P(flw_z, Z_;,z2; = k)
P(eilc—i,z—i,zi = k)P(z = k|z_;) (6)

where the dependence on the parameters that describedhé pric, 3, v, Ao, ko, Yo, to) IS SUP-
pressed for the sake of readability. In this expresgiondenotes the set of all cluster assignments



except theth, and the normalizing term is calculated by summing Eguadiover all possible clus-
ter assignments, including the possibility that théh item is assigned to an entirely new cluster.

The conditional prior probability?(z; = k|z_;) is
— if & is old
J— ) — n—1l+4o
Pz = klz—i) = { o™ it 1 is new (7)

n—1+a

whereny counts the number of items (not including tite) that have been assigned to thih
cluster. Since the context is modelled using a beta-Belimoabel:

n,(:i) + v

8
ng + 2y ®)

1
P(cilc—i,z—i,zi = k) = / P(cilor, zi = k)P(dr|c—i,z—;) dor, =
0

Wheren,(f” counts the number of observations that have been assigrédbsterk and appeared in
the same context as thith item. A similar result applies to the labelling scheme:

n;fi) +A

ng + 23 ®)

1
P(€1|E,“ Z_;,Z; = k) = / P(€z|9k7 Zi = k:)P(HkM,“ Z,i) d@k =
0

Wherengi) counts the number of observations that have been assigreddsterk and given the

same label as observationFinally, integrating out the mean vectay, and covariance matrixy,
for the feature values yieldsd&adimensional multivariate distribution (e.g., [10], ch. 3):

P(xi|x—i,z—i,2i = k) / P(xi|pr, B, zi = k) P(pr, Br|x—i,2-;) d(px, Z) (10)

u;€+d
v, +d —1 -
r(s) <1+ (i~ HIA (xz—w) 4

vl d 1 /
D(F) () 2 |AL ]2 Yk

In this expression the posterior degrees of freedom fot@lusis v}, = vy + nr — d + 1 and the
posterior mean ig;, = (koo + nixXr)/ (Ko + ni), wherex, denotes the empirical mean feature
values for items in the cluster. Finally, the posterior scahtrix is

Ko+ nk+1
(H() +nk)(l/() + ng — 2d+2)

RoTk

A, = (Ao + Sk + (Xk — HO)T()_(IC - Ho)) (12)

Ko + ng
whereS;, = > (x; — %) T (x; — X, is the sum of squares matrix around the empirical clustenmea
X1, and the sum in question is taken over all observations@agitp clustek.

Taken together, Equations 6, 8, 9 and 11 suggest a simpleks G#mpler over the cluster assign-
mentsz. Cluster assignments are initialized randomly, and are then sequentially redréom
the conditional posterior distribution in Equation 6. Foe tapplications in this paper, the sampler
typically converges within only a few iterations, but a muehger burn in (usually 1000 iterations,
never less than 100) was used in order to be safe. Successimes are drawn at a lag of 10
iterations, and multiple runs (between 5 and 10) are uselll tases.

3 Application to knowledge partitioning experiments

To illustrate the behavior of the model, consider the mgsicl example of a knowledge partition-
ing experiment [3, 4, 6]. Stimuli vary along two continuousénsions (e.g., height of a rectangle,
location of a radial line), and are organized into categouging the scheme shown in Figure la.
There are two categories organized into an “inside-outsttacture, with one category (black cir-
cles/squares) occupying a region along either side of theraine (white circles/squares). The
critical characteristic of the experiment is that each stim is presented in a particular “context”,
usually operationalized as an auxiliary feature not tietthéostimulus itself, such as the background
color. In Figure 1a, squares correspond to items presentedd context, and circles to items pre-
sented in the other context. Participants are trained agetliems in a standard supervised catego-
rization experiment: stimuli are presented one at a timéh(thie context variable), and participants
are asked to predict the category label. After making a ptedhi, the true label is revealed to them.
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Figure 1: Stimuli used in the typical knowledge partitiogigiesign (left) and the different general-
ization patterns that are displayed by human learnerstfri§ercentages refer to the probability of
selecting category label A.

This procedure is repeated until participants can cosréaliel all items. At this point, participants
are shown transfer items (the crosses in Figure 1a), and agkat category label these items should
be given. No feedback is given during this phase. Criticalch transfer item is presented in both
contexts, to determine whether people generalize in a kbspecific way.

The basic effect, replicated across several different xats, is that there are strong individual
differences in how people solve the problem. This leadsd¢dwlo characteristic patterns of general-
ization shown in Figure 1b (these data are from Experimeatsfl?A in [6]). Some participants are
context insensitive (lower two panels) and their preditdi@bout the transfer items do not change
as a function of context. However, other participants argext sensitive (upper panels) and adopt
a very different strategy depending on which context thedtier item is presented in. This is taken
to imply [3, 4, 6] that the context sensitive participantsdndearned a conceptual representation in
which knowledge is “partitioned” into different bundlesiah associated with a different context.

3.1 Learning the knowledge partition

The initial investigation focused on what category repnésgons the model learns, as a function
of o and~. After varying both parameters over a broad range, it wear ¢heat there are two quite
different solutions that the model can produce, illusttateFigure 2. In the four cluster solution
(panel b, smalk), the clusters never aggregate across items observedfaredif contexts. In
contrast, the three cluster solution (panel a, largés more context general, and collapses category
B into a single cluster. However, there is an interactiomwit since largev values drive the model

to introduce more clusters. As a result, for> 1 the model tends not to produce the three cluster
solution. Given that the main interest is4nwe can fixa such that the prior expected number of
clusters is 3.5, so as to be neutral with respect to the twaisak. Since the expected number of

clusters is given bw Zz;é(a + k) [11] and there are = 40 observations, this value is = 0.72.

The next aim was to quantify the extent to whighnfluences the relative prevalence of the four
cluster solution versus the three cluster solution. Forgaven partition produced by the model, the
adjusted Rand index [12] can be used to assess its similatitye two idealized solutions (Figure 2a
and 2b). Since the adjusted Rand index measures the extehittio any given pair of items are clas-

sified in the same way by the two solutions, it is a natural messf how close a model-generated
solution is to one of the two idealized solutions. Then, dthgpan approach loosely inspired by

PAC-learning [13], two partitions were deemed to be apprately the same if the adjusted Rand
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Figure 2: The two different clustering schemes producedhieycontext sensitive RMC, and the
values ofy that produce them (far fixed at 0.72). See main text for details.
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posterior probability of approximate agreement

index between the two exceeded 0.9. The estimated pospedbebility that the model solutions
approximate either of the the two idealized partitions istield in Figure 2c as a function of.
At smaller values ofy (below about 3.7) the four cluster solution is extremely dtant whereas
at larger values the three cluster solution is preferrediceSthere are approximately6 x 103°
possible partitions of 40 objects, the extent of this doma®sis clearly very strong.

The fact that the model concentrates on two different butedgtsensible solutions as a function of
~ is very appealing from a psychological perspective. Onb®htost desirable characteristics is the
fact that the partitioning of the learners knowledge is maddicit. That is, the model learns a much
more differentiated and context bound representation whisrsmall, and a more context general
and less differentiated representation when large. By way of comparison, the only other model
that has been shown to produce the effect is ATRIUM [14], Wwhirtits standard form consists of
a linked “rule learning” module and an “exemplar learningdaile. In order to fit the data, the
model was modified [4] so that it starts with two rule modulesl @an exemplar model. During
training, the model learns to weight each of the rule moddiéerently depending on context,
thereby producing context specific generalizations. Thisiges a partial explanation of the effect,
but it is rather unsatisfying in some ways. In ATRIUM, the kwiedge partition is represented via
the learned division of responsibilities between two hawded rule modules [4]. In a very real
sense, the partition is actually hard coded into the archite of the model. As such, ATRIUM
learns the context dependence, but not the knowledgeipaiitiself.

3.2 Generalizing in context-specific and context-generalays

The discussion to this point shows how the valueyafhapes the conceptual knowledge that the
model acquires, but has not looked at what generalizatimsibdel makes. However, it is straight-
forward to show that varying does allow the context sensitive RMC to capture the two gdizer
tion patterns in Figure 1. With this in mind, Figure 3 plote tipeneralizations made by the model
for two different levels of context specificityy (= 0 and~y = 10) and for the two different clustering
solutions. Obviously, in view of the results in Figure 2c thest interesting cases are panels (a) and
(d), since those correspond to the solutions most likelyetéelarned by the model, but it is useful
to consider all four cases. As is clear from inspection — asified by the squared correlations
listed in the Figure caption — whenis small the model generalizes in a context specific manner,
but wheny is large the generalizations are the same in all contexis. ldppens for both clustering
solutions, which implies that plays two distinct but related roles, insofar as it influeites context
specificity ofboththe learned knowledge partition and the generalizatiomgto observations.

4 Acquiring abstract knowledge about context specificity

One thing missing from both ATRIUM and the RMC is an explaoatior how the leaner decides
whether context specific or context general representwtiomappropriate. In both cases, the model
has free parameters that govern the switch between the teas.cand these parameters must be
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Figure 3: Generalizations made by the model. In panel (a)rtbéel accounts for 82.1% of the
variance in the context sensitive data, but only 35.2% of/ir@nce in the context insensitive data.
For panel (b) these numbers are 77.9% and 3.6% respectiWelgn~ is large the pattern reverses:
in panel (c) only 23.6% of the variance in the context seresitiata is explained, whereas 67.1% of
the context insensitive data can be accounted for. In pajheihe numbers are 17.5% and 73.9%.

estimated from data. In the RMG, is a free parameter that does all the work; for ATRIUM,
four separate parameters are varied [4]. This poses theiguiebow do people acquire abstract
knowledge about which way to generalize? In RMC terms, howeanfer the value ofy?

To answer this, note that if the context varies in a systenfashion, an intelligent learner might
come to suspect that the context matters, and would be nia@ly lio decide to generalize in a
context specific way. On the other hand, if there are no syaiermpatterns to the way that observa-
tions are distributed across contexts, then the learnerdhitzem the context to be irrelevant and
hence decide to generalize broadly across contexts. Inthéeds exactly what happens with human
learners. For instance, consider the data from Experimanf4]. One condition of this experiment
was a standard knowledge partitioning experiment, idahiticevery meaningful respect to the data
described earlier in this paper. As is typical for such ekpents, knowledge partitioning was ob-
served for at least some of the participants. In the othedition, however, the context variable was
randomized: each of the training items was assigned to amlydthosen context. In this condition,
no knowledge partitioning was observed.

What this implies is that human learners use the systerhatitthe context as a cue to determine
how broadly to generalize. As such, the model shaeddn that~ is small when the context varies
systematically; and similarly should learn thais large if the context is random. To that end, this
section develops a hierarchical extension to the modeldtaile to do exactly this, and shows that
it is able to capture both conditions of the data in [4] withearying any parameter values.

4.1 A hierarchical context-sensitive RMC

Extending the statistical model is straightforward: wecpl@riors overy, and allow the model to
infer a joint posterior distribution over the cluster assitentsz and the context specificity. This is
closely related to other hierarchical Bayesian models tfgmary learning [15-19]. A simple choice
of prior for this situation is the exponential distribution

~|A ~ Exponential)) (13)

Following the approach taken with, A was fixed so as to ensure that the model has no a priori bias
to prefer either of the two solutions. When= 3.7 the two solutions are equally likely (Figure 2);
a value ofA = .19 ensures that this value ofis the prior median.
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Figure 4: Learned distributions overin the systematic (dark rectangles) and randomized (light
rectangles) conditions, plotted on a logarithmic scalee @ashed line shows the location of the
prior median (i.e.;y = 3.7).

Inference in the hierarchical model proceeds as beforé,alletropolis step added to resample
The acceptance probabilities for the Metropolis sampley beacalculated by observing that

P(ylx,€,c,z) « P(x,£c|z,v)P(y) (24)
o< P(c|z,v)P(7) (15)
— [ Peln.ai(@h) 4o P() (16)

K 1
= PO [ PEPlo0rou) do (17)
k=1
K np! BV 44,0l 4 )
= Nexp(—)\ k k "k 18
b 7),};‘[171,(::1)!71;6:2)! B(v,7) (18)
K B(n,(::l)wL’y,nEf:Q)wL’y)
xp(— 9
x exp( Aw)kl;[l B0 ) (19)

whereB(a,b) = T'(a)T'(b)/T'(a + b) denotes the beta function, anfg":j) counts the number of
items in clustek that appeared in context

4.2 Application of the extended model

To explore the performance of the hierarchical extensiothefcontext sensitive RMC, the model
was trained on both the original, systematic version of th@Wedge partitioning experiments, and
on a version with the context variables randomly permutdte fosterior distributions overthat
this produces are shown in Figure 4. As expected, in the syie condition the model notices the
fact that the context varies systematically as a functiotneffeature values, and learns to form
context specific clusters. Indeed, 97% of the posterioriligion overz is absorbed by the four
cluster solution (or other solutions that are sufficientigikar in the sense discussed earlier). In the
process, the model infers thais small and generalizes in a context specific way (as per€&igu
Nevertheless, without changing any parameter valuesatime snodel in the randomized condition
infers that there is no pattern to the context variable, tvieicds up being randomly scattered across
the clusters. For this condition 57% of the posterior maspoximately equivalent to the three
cluster solution. As a result, the model infers thas large, and generalizes in the context general
fashion. In short, the model captures human performande gffectively.

When considering the implications of Figure 4, it is cleaattthe model captures the critical fea-
ture of the experiment: the ability tearn when to make context specific generalizations and when
not to. The distributions ovey are very different as a function of condition, indicatingtlthe
model learns appropriately. What is less clear is the extenthich the model would be expected
to produce the correct pattern of individual differencessplection of Figure 4 reveals that in the



randomized context condition the posterior distributisery does not move all that far above the
prior median of 3.7 (dashed line) which by construction ieied to be a fairly neutral value,
whereas in the systematic condition nearly the entireiligion lies below this value. In other
words, the systematic condition produces more learningtadf one were to suppose that people
had no inherent prior biases to prefer to generalize one walyeoother, it should follow that the
less informative condition (i.e., random context) sho@deal more individual differences. Empir-
ically, the reverse is true: in the less informative cormuditiall participants generalize in a context
general fashion; whereas in the more informative condifien, systematic context) some but not
all participants learn to generalize more narrowly. Thisglnot pose any inherent difficulty for the
model, but it does suggest that the “unbiased” prior chosethfs demonstration is not quite right:
people do appear to have strong prior biases to prefer coyegeeral representations. Fortunately, a
cursory investigation revealed that altering the prioroveoves the posteriors in a sensible fashion
while still keeping the two distributions distinct.

5 Discussion

The hierarchical Bayesian model outlined in this paper @rgl how human conceptual learning
can be context general in some situations, and contexttsenisi others. It captures the critical
“knowledge partitioning” effect [2—4, 6] and does so with@ltering the core components of the
RMC [7] and its extensions [15, 16, 18, 20]. This successdéadn interesting question: why does
ALCOVE [21] not account for knowledge partitioning (see [4])? Arguably, ZQVE has been
the dominant theory for learned selective attention foras20 years, and its attentional learning
mechanisms bear a striking similarity to the hierarchicay&sian learning idea used in this paper
and elsewhere [15-19], as well as to statistical methodaditsmatic relevance determination in
Bayesian neural networks [22]. On the basis of these siitidsay one might expect similar behavior
from ALCOVE and the context sensitive RMC. Yet this is not tiese. The answer to this lies in
the details ofvhyone learns dimensional biases. In ALCOVE, as in many coior@st models, the
dimensional biases are chosen to optimize the ability tdipt¢éhe category label. Since the context
variable is not correlated with the label in these experitiéoy construction), ALCOVE learns to
ignore the context variable in all cases. The approach takghe RMC is qualitatively different:

it looks for clusters of items where the label, the contexd #re feature values are all similar to
one another. Knowledge partitioning experiments more €8 tequire that such clusters exist, so
the RMC can learn that the context variable is not distridutsaxdomly. In short, ALCOVE treats
context as important only if it can predict the label; the RM€ats the context as important if it
helps the learner infer the structure of the world.

Looking beyond artificial learning tasks, learning the &itons in which knowledge should be ap-
plied is an important task for an intelligent agent opexatma complex world. Moreover, hierar-
chical Bayesian models provide a natural formalism for dbswy how human learners are able to
do so. Viewed in this light, the fact that it is possible foiop&e to hold contradictory knowledge
in different “parcels” should be viewed as a special caséefgeneral problem of learning the set
of relevant contexts. Consider, for instance, the exanmpiehich fire fighters make different judg-
ments about the same fire depending on whether it is calledlathan or a to-be-controlled fire
[2]. If fire fighters observe a very different distribution fifes in the context of back-burns than
in the context of to-be-controlled fires, then it should besngrise that they acquire two distinct
theories of “fires”, each bound to a different context. Aligb this particular example is a case in
which the learned context specificity is incorrect, it takesy a minor shift to make the behavior
correct. While the behavior of fires does not depend on theorearhy they were lit, it does depend
on what combustibles they are fed. If the distinction werevieen fires observed in a forest con-
text and fires observed in a tyre yard, context specific cayagpresentations suddenly seem very
sensible. Similarly, social categories such as “politegvér” are necessarily highly context depen-
dent, so it makes sense that the learner would construetelift rules for different contexts. If the
world presents the learner with observations that varyesyatically across contexts, partitioning
knowledge by context would seem to be a rational learniregesy.
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