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Abstract

Many theoretical accounts of generalization suggest that with
increasing data, people should tighten their generalizations.
However, these accounts presume that the additional data
points are all distinct. Other accounts, such as the adap-
tor grammar framework in linguistics (Johnson, Griffiths, &
Goldwater, 2007), suggest that when the additional data points
are identical, generalizations about grammaticality need not
tighten appreciably: they may be made on the basis of type fre-
quency rather than token frequency (although token frequency
can affect other types of learning). We investigated what hap-
pens in this situation by presenting participants with identi-
cal data in both a linguistic and a non-linguistic context, some
ten times as much as others, and asking them to generalize to
novel exemplars. We find that people are insensitive to token
frequencies when determining how far to generalize, though
memory has a small mediating effect: generalizations tighten
slightly more when people may rely on a memory aid.
Keywords: generalization; category learning; adaptor gram-
mar; grammar learning; types; tokens; size principle; fre-
quency

Introduction
How far should people generalize from the data they have ob-
served? If a child points out two beagles and a basset hound
and calls them GLUGGIES, should we guess that she will also
call a great dane by this name? We could generalize narrowly,
and guess that the word GLUGGIES refers only to small dogs.
Or we could generalize broadly, and guess that it might in-
clude cats and other typical household pets.

One approach to this problem is to assume that observa-
tions are sampled randomly from the true extension of the cat-
egory, and use Bayes’ rule to guide inferences (Tenenbaum &
Griffiths, 2001). According to this “strong sampling” scheme,
if a category contains k items, each item will be observed with
probability 1

k . Given two hypotheses about the category that
are both consistent with the observations, one narrow and the
other broad, a Bayesian learner will eventually learn to prefer
the narrower hypothesis as more and more data arrive. This
is because the narrower hypothesis assigns higher probability
to the observations. This is known as the size principle, and
it (or something like it) has been shown to guide human gen-
eralization in a variety of contexts (Xu & Tenenbaum, 2007;
Navarro & Perfors, 2010; Navarro, Dry, & Lee, 2012).

One ambiguity in this research, however, is that it assumes
that all observations are independently sampled and meaning-
fully distinct from one another. Suppose it turned out that the
“two” beagles labelled GLUGGY by the child look identical
and may be the same animal. Should this be treated as one
data point or two? This is a common problem: people do re-
peatedly encounter the same dog or hear the same sentence
many times (e.g., “How are you?”). The normative treatment

of identical data points depends on how one interprets the
generative process behind the data. If the sampling process is
something akin to drawing examples with replacement from
a bag of possibilities, then the size principle should apply:
seeing the same example multiple times is actually strong ev-
idence that the true extension of the category is very small.

A more conservative approach is for people to make a dis-
tinction between distinct entities (types) and the set of in-
stances (tokens) on which they have been observed. It is not
unreasonable to assume that distinct types represent distinct
samples from the category, but multiple tokens of the same
type may not. The issue comes down to the relevance of token
frequency to the inference at hand. For instance, seeing the
same beagle repeatedly may be informative about the number
of dogs in the neighborhood, but it does not say much about
how common beagles are relative to other kinds of dog.

In linguistics this insight is captured using the adaptor
grammar framework (Johnson et al., 2007), in which the
learner makes a distinction between the underlying category
to be learned (the grammar) and a mechanism that shapes the
frequencies with which category members are observed (the
adaptor). This framework has been successfully applied to
many aspects of language (e.g., Johnson & Demuth, 2010;
O’Donnell, Snedeker, Tenenbaum, & Goodman, 2011; Per-
fors, Tenenbaum, & Regier, 2011), and under certain param-
eter values it makes a different prediction than the one that
emerges from strong sampling. If the same set of entities are
observed many times, this is not in and of itself evidence that
the true category is small: generalizations should only tighten
when new types are observed, not new tokens.

Although the adaptor grammar approach was developed
to explain linguistic phenomena, there is no reason why it
should not apply more broadly. Categories can be considered
to consist of a set of entities, or types (the extension of the
category), and a frequency distribution can then be defined
over that extension; the former is analogous to the grammar,
the latter to the adaptor. On the other hand, language is dif-
ferent from concept learning in many ways – for instance,
individual sentences are not physical entities in the same way
that exemplars from a concept are. It is also possible that
token frequencies are relevant in category learning problems
but not language learning ones.

This paper investigates how people change their general-
izations when they encounter new tokens of old types. We
begin by presenting an experiment in which participants were
shown a dataset of ten distinct types of exemplars, each oc-
curring either once or ten times. Our main question is whether
people tighten their generalizations when they are shown ten
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Figure 1: Sample stimuli in the INSCRIPTION and DESIGN condi-
tions. Participants in the DESIGN condition were asked to classify
bracelets with different patterns, while those in the INSCRIPTION
condition classified bracelets with different inscriptions. The top
two rows show training items; the bottom three show test items.

times as much data, even though the number of types is equiv-
alent in each case. We also investigate whether domain dif-
ferences exist, presenting the same data in a linguistic and
non-linguistic scenario. We find that in both domains, there
is little difference in generalization with increasing data. This
is mediated by memory: although in all cases people gener-
alize fairly widely, they generalize less widely when given
assistance with memory.

Experiment
454 adults were recruited via Amazon Mechanical Turk. 40
participants were excluded from further analysis for failing
to pass a “check” question, described below. This left 414
participants, ranging in age from 18 to 66 (mean: 31.8)
and 39.4% were female. 314 of the final participants were
from the United States and 68 were from India. Those re-
maining were from 12 other countries in Africa, North and
South America, Europe, and Asia. All participants were paid
$0.50US for the 5-10 minute experiment.

Procedure
The cover story informed people that as curators of a mu-
seum, they had received a collection of bracelets from their
predecessor. In the first phase of the experiment, people
were shown sample bracelets from the collection one-by-one,
clicking Next to see the next item. The appearance and num-
ber of the bracelets, as well as whether previously-viewed
ones stayed on screen, varied by condition. In the second
phase people were shown new items and asked to indicate if
the new bracelet belongs in the collection on a 7-point scale
from “agree strongly” (1) to “disagree strongly” (7). There
were 15 test items which varied according to how closely they
matched the original stimuli (described in more detail below).

Conditions
This experiment varied three factors1, resulting in a 2x2x2
design and 8 conditions. We describe each factor below.

1We varied a fourth factor, saliency, by coloring the stimuli in
some conditions. Because this manipulation did not produce effects
bearing on the main point, for space reasons we do not report on it,
though we include all of the data from this factor.

du gi bo du
du la la gi du

du gi gi bo la du
du gi la gi bo du
du du bo du du

du du gi bo gi du du
du du la bo gi gi du du
du du du gi la du du du

du du du bo gi la du du du
du du du du bo du du du du

Table 1: Each of the 10 training stimulus types in the INSCRIP-
TION condition. Stimuli were generated from a grammar of the form
AnBmAn, where A = {du} and B = {bo,gi, la}. Stimuli in the DE-
SIGN condition corresponded exactly to these; examples are shown
in Figure 1. These items occurred once each in the 1X condition and
ten times each in the 10X condition.

TYPE. Two stimulus types were used, one language-like
and the other non-linguistic. In the INSCRIPTION condition,
participants were told that the bracelets each contained an
inscription that they would read. In the DESIGN condition,
participants were shown a patterned bracelet. The two stim-
ulus types are illustrated in Figure 1. The underlying struc-
ture of the stimuli was identical in both conditions. By using
bracelets as the artifacts to be learned about, the obvious lin-
ear structure in the DESIGN condition could be explained by
the fact that they are bracelets, thereby minimizing the chance
that people would perceive the bracelet pattern as linguistic.

QUANTITY. The major question motivating this work
was whether people tighten their generalizations with addi-
tional instances of identical exemplars. We therefore varied
the quantity of training stimuli people received. In the 1X
condition, people saw 10 distinct stimulus types, shown in
Table 1. The ‘true’ category is defined by a context free
grammar (CFG) of the form AnBmAn, where A = {du} and
B = {bo,gi, la}, but the 10 exemplar types are consistent with
many grammars.2

The 10X condition differed from the 1X only in terms of
the number of observations: instead of seeing each exemplar
once, participants saw ten exemplars of each of the ten types.
If people pay attention only to the distinct types when form-
ing generalizations, we would expect performance to be iden-
tical in the 1X and 10X conditions, despite the fact that there
is ten times more data in the latter. On the other hand, if peo-
ple form generalizations on the basis of token frequency as
well, we would expect them to generalize far less – to accept
many fewer test stimuli as acceptable category members – in
the 10X condition. Stimulus order was randomized.

MEMORY AID. Because the extent to which one gener-
alizes is in part a function of one’s memory for the training
data, we varied the degree to which people had to rely on
their memory to do this task. In the AIDED condition, previ-
ously encountered training stimuli were shown smaller in the

2As shown in Figure 1, in the DESIGN condition people saw pat-
terns, not syllables. Throughout the paper, we refer to stimuli using
the linguistic form (as in the INSCRIPTION condition).
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Stimulus Type
du la la gi du Observed

du du la bo gi gi du du Observed
du du du gi la du du du Observed

du bo gi la la du Depth-limited
du du du la du du du Depth-limited
du du la gi bo du du Depth-limited

du du du du du du bo la du du du du du du Full CFG
du du du du du gi bo du du du du du Full CFG

du du du du du la du du du du du Full CFG
bo du gi gi la bo Any order
du du du la bo du Any order
gi du du la du la Any order

wi sa fo Incorrect
fo wi pe wi wi ho vu Incorrect

pe ho sa vu vu re Incorrect
Table 2: Test stimuli, listed in decreasing order according to how
closely the match the training data. The top stimuli (Observed) pre-
cisely match stimuli that were seen in the input. The Depth-limited
stimuli could have been generated by the AnBmAn grammar, limited
to the depth of embedding as the training stimuli. The Full CFG sen-
tences could be generated by that grammar without that limitation.
The Any order stimuli could be generated by a grammar that allows
A or B elements in any order; this grammar could have generated
the training stimuli but also many other sentences as well. Finally,
the Incorrect stimuli could have been generated by a grammar with
a different underlying vocabulary.

background, and remained onscreen for the duration of the
experiment. In the UNAIDED condition people saw stimuli
one-by-one, with each stimulus disappearing before the next
appeared. The key question of interest is whether there is an
interaction between memory aid and quantity: perhaps peo-
ple generalize more tightly in the 10X condition only when
memory is AIDED.

Test stimuli
An essential part of this research is to be able to evaluate how
tightly or loosely people generalize from the training stim-
uli they have seen. To that end, we constructed test stimuli
that could have been generated by grammars (categories) that
more or less precisely fit the input data. All stimuli are shown
in Table 2, and are described in detail in this section.

Observed. These stimuli occurred in the training data.
They therefore represent the tightest generalization, and we
expected that participants should consistently accept them.

Depth-limited. These could have been generated by a gram-
mar approximating the AnBmAn grammar, but limited to the
same depth of embedding as the training stimuli.3 It repre-
sents a tight level of generalization: people endorsing these
stimuli but not full CFG would have realized that the number
of elements on the left and right must match, but would not
think that there could be more than four elements on either
side (since that was the maximum occurring during training).

3Because of the limitation in depth, this grammar might therefore
be implementable as a regular grammar.

Full CFG. These stimuli could have been generated by the
AnBmAn grammar without the limitation on depth of embed-
ding; the left and right elements occur more often than was
observed during training. As such, accepting these stimuli
requires generalizing further away from the training data.

Any order. These stimuli could be generated by a gram-
mar containing the same underlying A or B elements, but per-
mitting them to occur in any order. Because it captures the
training stimuli, it is not wrong, but accepting these stimuli
amounts to generalizing quite far from the training.

Incorrect. These stimuli could be generated by a grammar
with a different underlying “vocabulary” (i.e., different sylla-
bles or bracelet patterns). Accepting them requires generaliz-
ing very far from the training data. We therefore used these
stimuli as a “check” to catch those participants who were not
trying or did not understand the task. The 40 participants ex-
cluded from the analysis were those who agreed that these
stimuli belonged in the collection (giving them a rating of 1,
2, or 3 on the 7-point scale described earlier).

Results
Figure 2 shows the average degree of generalization by each
of the three main factors. Because each individual participant
contributed 15 data points, standard ANOVAs were inappro-
priate. We therefore used three different linear mixed-effects
models, one for each factor, with participant as a random ef-
fect and the factor and test stimulus as fixed effects.4 For all
three factors, there was a significant main effect of test stim-
ulus (χ2(4) = 5282.4, p < 0.0001,η2 = 0.517 for all). Peo-
ple responded differently to the different test stimuli, gener-
alizing more to the ones that are more similar to the training
stimuli and less to the ones that are different. This is a clear
indication that they understood the task.

More relevantly to the main questions motivating this
work, there is no main effect of the type or quantity of stimu-
lus (TYPE: χ2(1) = 0.002, p = 0.9576; QUANTITY: χ2(1) =
0.018, p = 0.8945). Overall, people generalized the same re-
gardless of whether they were classifying bracelets according
to the INSCRIPTION or the DESIGN, and regardless of whether
they saw ten or one hundred data points. That said, there was
a significant interaction (TYPE: χ2(4) = 21.49, p = 0.0002;
QUANTITY: χ2(4) = 21.48, p = 0.0002). The effect size of
the interaction is extremely tiny (η2 = 0.001 for both factors),
suggesting that this effect is of negligible interest, and prob-
ably arose mainly due to our large sample size. In fact, for
both factors, the model with the interaction was not preferred
by BIC over the model with just the test stimulus as a fixed
effect.5 This suggests that the best model of the data is one
that only includes the test stimulus, not QUANTITY or TYPE
or an interaction term.

Receiving a memory aid makes a larger difference, though
the effect sizes are still tiny: there is a significant main effect

4We used the R command lmer() in the lme4 library and
rsquared.glmm() for this analysis.

5BICs: interaction (23162); factor and test stimulus, no interac-
tion (23148); test stimulus only (23140); factor only (28396).
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Figure 2: Generalization results by condition. The x axis shows the five types of stimuli, and the y axis shows mean responses to that stimuli.
In all conditions, willingness to accept test stimuli dropped monotonically as the test stimuli grew more dissimilar. There was little variation
in the willingness to generalize with changes in the type of stimulus or quantity of data. The presence of a memory aid did have an effect:
people generalized more tightly when they did not have to rely on their own memory.

of having a memory aid (χ2(1) = 5.32, p = 0.02,η2 = 0.002)
and a significant interaction (χ2(4) = 67.78, p< 0.0001,η2 =
0.004). Although the effect size remains small, the model
with the interaction was preferred by BIC over any of the
other models, suggesting that including the interaction this
time makes sense.6 People were more likely to accept the
Observed sentences if they could see the identical training
stimuli on their screen, thanks to the memory aid. They were
also less likely to accept the other test sentences. This makes
sense, since people who must rely on their memory may not
recall if they have seen similar stimuli in training, and thus
may be more willing to accept them.

Does memory mediate the effect of stimulus quantity?
One might expect that people would be more affected by
a greater quantity of data in the AIDED condition, because
they could remember the extra data better. In fact, how-
ever, in both the AIDED and UNAIDED conditions, the re-
sults are the same: there is no effect of quantity of data
(AIDED: χ2(1) = 0.25, p = 0.617; UNAIDED: χ2(1) =
0.21, p = 0.650) but a main effect of test stimulus (AIDED:
χ2(4) = 2476.9, p < 0.0001,η2 = 0.519; UNAIDED: χ2(4) =
2872.3, p < 0.0001,η2 = 0.524). The interaction in both
cases is significant, but the effect size is once again tiny
(AIDED: χ2(4) = 16.88, p = 0.002,η2 = 0.002; UNAIDED:
χ2(4) = 24.60, p < 0.0001,η2 = 0.003). Morever, BIC
prefers the model with just the test stimulus over all of the
others in both conditions.7 This suggests that although having
a memory aid makes people more likely to generalize more
tightly overall, the effect of stimulus quantity is the negligible
regardless of whether memory is aided or not.

One interesting aspect to these results is that in all condi-
tions there is a nearly linear generalization curve for the dif-
ferent kinds of test stimuli. If people really were learning an

6BICs: interaction (23110); memory and test stimulus, no inter-
action (23143); test stimulus only (23140); memory only (28390).

7AIDED BICs: interaction (10625); quantity and test stimulus
(10610); test stimulus only (10603); quantity only (13055);
UNAIDED: interaction (12528); quantity and test stimulus (12520);
test stimulus only (12512); quantity only (15360).

underlying rule, one would expect their generalization curves
to be sharper – being willing to accept all stimuli of a certain
kind (e.g., all of the Full CFG stimuli) but none of the stimuli
at the next level (e.g., none Any order). It is possible that the
results in Figure 2, being group-level data, obscure different
patterns of individual generalization.

To explore this issue, for each participant we find the gram-
mar that best fits the response data. We do this by represent-
ing the generalization patterns of five different grammars on
the test stimuli. The five possible grammars are each nested
within each other: the most tightly-fitting grammar accepts
only the Observed stimuli, the next most tightly fitting ac-
cepts the Observed and Depth-limited stimuli, and so forth.
All grammars are named after the broadest test stimuli they
accept (thus, the Depth-limited grammar fits the Depth-limited
stimuli but not the Full CFG, and so on). For each partici-
pant, we calculate the fit to each grammar by taking the sum
squared error between the predictions of the grammar and the
person’s responses. The best grammar minimizes that error.

Overall, fits to individual grammars were good. The ma-
jority of people (51.7%) had sum-squared errors of less than
one (on a normalized scale). This suggests they completely
misclassified only one of the 15 test stimuli or slightly mis-
classified a few. 81.4% had errors of less than two, and there
were no errors over four.

Figure 3 shows the best-fit grammars for each condition.
Strikingly, in all conditions most people are best fit by the
Any order and Full CFG grammars. These are the most gen-
eral grammars (aside from the Incorrect one), which suggests
that people are willing to extrapolate fairly broadly from the
input data. Interestingly, few people in any condition prefer
the Depth-limited grammar. It suggests that as long as people
perceive the dependency between the number of du elements,
they represent this dependency at its maximum generality.

More importantly, these fits support the emerging picture
that there is little effect of either quantity or type of stim-
ulus on the generalizations individuals make. Neither fac-
tor is significant (type of stimulus: χ2(3) = 5.44, p = 0.142;
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Figure 3: Fits of each individual to the grammar that best captures their pattern of responses. The y axis shows the proportion of people best
fit to that type of grammar, and the legend describes the five candidate grammars. Few people in any condition were best fit by the Incorrect
grammar, and most in all conditions were best fit by the two other grammars of greatest generality – Any order (which accepted stimuli in
which the elements could occur in any order) and Full CFG (which is the AnBmAn grammar that generated the training stimuli). People’s
grammars do not change based on the quantity of stimuli (each type once (1X) or ten times (10X)) or the type of stimuli (INSCRIPTION or
DESIGN). However, there was an effect of receiving a memory aid. When people did not rely on their own memory they generalized more
tightly: fewer favored the most general Any order grammar, and more favored the tightest grammars (Depth-limited and Observed).

quantity: χ2(3) = 1.23, p = 0.745). However, as before,
the existence of a memory aid does have a significant effect
(χ2(3) = 15.86, p = 0.001,V = 0.196). Consistent with the
previous results, people generalize less when they don’t have
to rely on their own memory – more people are fit by a Full
CFG rather than the wider Any order grammar, which permits
stimuli in which the vocabulary words can occur in any order.

As with the previous analysis, we can ask whether the ef-
fect (or, in this case, lack of effect) of quantity is mediated by
memory: might there be more of an effect of seeing more data
when people can remember all of the data? As before, the an-
swer seems to be no, at least broadly speaking: as Figure 4
makes clear, the difference between the 1X and 10X condi-
tions is not significant whether there is a memory aid or not
(χ2(3) = 4.00, p = 0.262) or not (χ2(3) = 2.91, p = 0.406).

Discussion
The results in this experiment imply that people do not tighten
their generalizations when they observe more data, at least
not when the new observations are identical to those made
previously. This lack of tightening is novel: previous work
has shown that people do tighten their generalizations with
increasing data, though sometimes less than the size princi-
ple would warrant (Xu & Tenenbaum, 2007; Frank & Tenen-
baum, 2011; Navarro et al., 2012; Vong, Hendrickson, Per-
fors, & Navarro, 2013). However, in those studies the addi-

1x 10x
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8
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Best fit grammar
Incorrect
Any order
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Figure 4: Fits of each individual to the best grammar, broken down
by whether memory was aided. Although there is a difference be-
tween the AIDED and UNAIDED condition (as in Figure 3 above),
there is no effect of quantity of data within either condition.

tional data was always new, not more instances of exemplars
that had already been seen.

It is worth noting that the lack of effect of quantity or type
of data in this study is unlikely to be due to a lack of statistical
power; this experiment was quite large for a study in this area,
with over 400 participants, and it was powerful enough that
even effect sizes of η2 = 0.002, capturing 0.2% of the total
variance, were significant. By the standards of null results,
this would appear to be a convincing one.

A theoretical explanation of this null result is available, as
noted in the introduction: adaptor grammars. Within this for-
malism, the set of admissable entities (as defined by the gram-
mar) that belong to the category is defined independently of
the mechanism by which copies of previously observed are
re-sampled (as defined by the adaptor). Our results are con-
sistent with an adaptor grammar view of categories as well.

The adaptor framework also may explain why there was in-
creased tightening, albeit a small amount, when people were
given a memory aid. If, as is sometimes theorized, the adap-
tor reflects a memory cache, then removing the necessity for
keeping one may result in more of an assumption that ad-
ditional tokens are generated from the underlying grammar,
resulting in a tightening of generalizations. Of course, as Fig-
ure 4 shows, most people still preferred the “loosest” gram-
mars, so if this does occur the effect is not large.

The finding that people seem not to tighten their general-
izations with additional token data has interesting parallels
with theoretical work in the language acquisition literature
(Perfors et al., 2011). This work suggests that there is suf-
ficient evidence for a Bayesian learner given child-directed
input to conclude that language has hierarchical phrase struc-
ture, but only if the assumptions underlying the adaptor
framework are true and children tend to make grammatical
inferences largely on the basis of types rather than tokens.
This paper is the first experimental evidence we are aware of
indicating that people are, indeed, largely unresponsive to in-
creased token frequency when making generalizations about
what other sentences are grammatical. Such behavior is also
quite sensible: if people continued to tighten their general-
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izations as they heard more and more instances of the same
sentence, one would expect adults, with decades of experi-
ence with a language, to not generalize past their input at all!

Our results show that people don’t tighten their generaliza-
tions with increased quantity of identical data. However, so
far we have not shown that the degree of generalization peo-
ple show is matched by the degree of generalization that a
normative model might prefer based only on the distribution
of types. We have implemented such a model, and although
space limitations prevent us from describing it in detail, it is
explained in related supplementary materials.8 Results sug-
gest that the Full CFG grammar should be favored if learners
are paying attention only to types, but the Observed grammar
should be favored in the 10X condition if token frequencies
are relevant. As we saw in Figure 3, most participants favored
more general grammars than that. In fact, as the supplemen-
tary materials show, the majority of participants were better
fit by by assuming that their inferences were type-based.

The adaptor framework applies to the domain of language,
yet we found that people in the DESIGN condition, who were
shown bracelets with different designs, behaved no differ-
ently than the people who saw sentences in the INSCRIP-
TION condition. Why might this be? One possibility is that
even in the DESIGN condition, people didn’t treat it as a non-
linguistic task. Though we tried hard to make the stimuli look
as “bracelet”-like as possible, they could still have thought of
the links as a script in an unknown language. The fact that the
bracelet categories were defined using a grammar-like rule
may have also made the stimuli feel even more language-like.
This issue was unavoidable, since we wanted a condition that
was directly comparable to the INSCRIPTION condition, dif-
fering only in its surface form. However, the possibility that
people treated the DESIGN condition as a linguistic one is not
something we can rule out. We therefore take the lack of dif-
ference between the DESIGN and INSCRIPTION condition to
be a tentative finding at this point. Nevertheless, there is no
reason that an adaptor-like framework couldn’t be applied to
non-linguistic situations, so it is possible that people actually
do behave similarly in both domains.

That said, there does exist some prior work in the catego-
rization literature exploring how the frequency of identical
data points affect generalization (Barsalou, Huttenlocher, &
Lamberts, 1998). This work explores how people predict typ-
icality and category membership based on how the features of
an item occur with types and tokens of varying frequencies.
There are two main factors that are different about our work,
either of which could be the source of the difference. First, we
explore tightness of generalization, rather than what features
people attend to when forming generalizations. People might
be very subtle and intelligent about when they decide whether
token frequencies are relevant to the question at hand: per-
haps they realize that types are relevant for determining the

8Supplementary materials describing this analysis can be found
at http://health.adelaide.edu.au/psychology/ccs/docs/
pubs/2014/perforsetal14cogsci-supp.pdf

extent of generalization but tokens are relevant to predicting
particular items (Barsalou et al., 1998) or estimating the total
number of underlying types (Navarro, 2013). In terms of the
adaptor framework, people might be interpreting the question
in the Barsalou et al. (1998) study as being about the adap-
tor, in which case token frequency is the more relevant factor.
The second possibility is that, as previously discussed, people
may not have been treating our stimuli as being about cate-
gorization, even in the DESIGN condition. If categorization
and language are fundamentally different, this could be the
source of the discrepancy. Future work is necessary to tease
apart these two possibilities.

Overall, however, these results indicate that people gen-
erally find increased token frequency to be irrelevant when
determining how far to generalize to new examples. In par-
ticular, these generalizations tighten much less than some the-
oretical accounts, like the size principle, might predict. Given
the vast array of evidence showing that people are sensitive to
frequencies in many other kinds of situations, this is interest-
ing. It makes sense if one assumes that learners use token
frequency for some types of inferences, but generalizations
about grammaticality (or, similarly, category membership)
rely more on the distribution of types. This work suggests
that whether frequency matters may be partially a function of
what that frequency is of and what the generalization is for.
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