Characterising The Role Of Haptoglobin In Experimental Subarachnoid Haemorrhage

Thomas Craig Morris

Discipline of Anatomy and Pathology

School of Medical Sciences

The University of Adelaide

January 2015

Thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Master of Philosophy (Medical Science)
Table of Contents

Table of Contents.. 2
Abstract ... 5
Declaration .. 6
Author Contributions .. 7
Publications ... 8
Abbreviations .. 9
List of Figures .. 11
Acknowledgements ... 13
Chapter 1 .. 14
Introduction & Literature Review .. 14
1.1 Definition of Subarachnoid Haemorrhage .. 14
1.2 Anatomy of the Subarachnoid Space ... 14
1.3 Aetiology of Subarachnoid Haemorrhage .. 15
1.4 Epidemiology of Subarachnoid Haemorrhage .. 18
1.5 Complications and Outcomes of Subarachnoid Haemorrhage 18
1.6 Management of Subarachnoid Haemorrhage ... 19
 1.6.1 Surgical Management of Aneurysmal Subarachnoid Haemorrhage.......................... 19
 1.6.2 Medical Management .. 22
1.7 Delayed Neurological Deterioration (DND) .. 22
 1.7.1 Cerebral Vasospasm .. 23
 1.7.2 Delayed Ischaemic Neurological Deterioration .. 24
1.8 Current Management of Delayed Neurological Deterioration 25
 1.8.1 Haemodynamic Management .. 25
 1.8.2 Mechanical Therapies ... 26
 1.8.3 Pharmacological Management .. 26
1.9 Angiographic Vasospasm and Delayed Neurological Deterioration - Current Theories 27
1.10 Haemoglobin .. 29
1.11 Haemoglobin in Subarachnoid Haemorrhage ... 29
1.12 Haptoglobin ... 30
1.13 CD-163 .. 31
1.16 Animal Models of SAH, Cerebral Vasospasm and DND .. 35
1.17 Summary ... 36
1.18 Hypothesis and Study Aim ... 37

Chapter 2 ... 38

Methods and Troubleshooting ... 38

Methods .. 38

2.1 Animal Care & Ethics Approval ... 38

2.2 Experimental Procedures .. 38

2.2.1 Experimental Design ... 38

2.2.2 Anaesthesia .. 39

2.2.3 Placement of Intracranial Pressure Monitoring Device ... 40

2.2.4 Femoral Arterial Catheterisation ... 41

2.2.5 Initiation of SAH .. 42

2.2.6 CSF Collection ... 45

2.2.7 Immunohistochemical Staining for CD163 ... 47

2.2.8 Colour Deconvolution Method .. 48

Troubleshooting ... 49

2.3 Model Difficulties & Troubleshooting ... 49

2.3.1 Mortality ... 49

2.3.2 CSF Sampling .. 49

2.3.3 Analysis of CSF Samples ... 50

2.3.4 Augmentation of CSF Haptoglobin .. 51

Chapter 3 ... 53

The Temporal Profile of Free Haemoglobin and Haptoglobin in a Rat Model of Subarachnoid Haemorrhage .. 53

Statement of Authorship: ... 53

Abstract: .. 54

3.1 Introduction ... 56

3.2 Materials & Methods ... 57

3.2.1 Endovascular Perforation Model of SAH ... 57

3.2.2 Physiological Monitoring .. 58

3.2.3 CSF Collection and Analysis ... 58

3.2.4 Histological Examination ... 60

3.2.5 Statistical Analysis ... 60

3.3 Results ... 61

3.3.1 Quantification of Free Haemoglobin in CSF ... 61

3.3.2 Quantification of Haptoglobin in CSF ... 62

3.3.3 Quantification of Soluble CD163 in CSF .. 63

3.3.4 Immunohistochemical Staining for Haemoglobin/Haptoglobin Scavenging Receptor CD163 ... 64

3.4 Discussion .. 66
3.5 Summary ... 69
Acknowledgements .. 70
Source of funding .. 70
Conflicts of interest .. 70

Chapter 4 ... 71
General Discussion .. 71
4.1 Subarachnoid Haemorrhage & Delayed Cerebral Ischaemia .. 71
4.2 Subarachnoid Haemorrhage & Brain injury .. 73
4.3 Haemoglobin ... 73
4.4 Haptoglobin & CD163 ... 74
4.5 Implications and Future Directions .. 76
4.7 Study Limitations .. 77
4.8 Conclusions .. 78
References ... 79
Abstract

Subarachnoid haemorrhage (SAH) is a devastating event associated with significant mortality and morbidity. A large proportion of SAH patients either die or suffer permanent disability due to a delayed multifactorial injury processes involving blood vessels, diverse inflammatory processes and secondary injury mechanisms. Extracellular haemoglobin (Hb), released from lysed red blood cells after SAH, is thought to be one of the prime culprits that incite these pathological processes. The role of haptoglobin (Hp), a systemic acute phase protein and the primary Hb-scavenging molecule, has recently been postulated to play a role in the pathogenesis of cerebral arterial vasospasm and delayed neurological deterioration in patients suffering SAH. The aim of this project was to demonstrate the relationship between free Hb and Hp within the cerebrospinal fluid following SAH, using the previously validated rat filament model. The results show that whilst free Hb levels peaked at 24hr post-SAH, there was marked free Hb within the CSF as early as the 1hr post-SAH. In addition, there was an increase in CSF Hp and soluble CD163 macrophage haemoglobin scavenger receptor from baseline, concomitant with the Hb peak at the 24hr mark, with a steady and rapid taper off, in keeping with clearance of free Hb by 72hrs post-SAH. Additionally, histological assessment to examine macrophage receptor for uptake and subsequent degradation of the Hb/Hp complex showed sporadic parenchymal staining within the basal brain surface of rats that sustained SAH, but was absent in sham and control animals. This study adds further to the understanding of the way haemoglobin is handled in the central nervous system following SAH.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Thomas Craig Morris

Date: January 2015
Author Contributions

The following people have contributed to authorship of the manuscripts enclosed in this thesis (in alphabetical order): Thomas C Morris, Renée J Turner, Robert Vink.

The individual contributions of each author can be summarised as:

Conceptualisation and documentation of the work: TM, RJT, RV.

Realisation of the work: TCM.

I give my consent for any manuscript(s) in which I am a co-author to be included in this thesis:

Thomas C Morris

Renée J Turner

Robert Vink
Publications
The following articles have been published, accepted or submitted for publication during the period of MPhil candidature, and sections of these articles are included in the present thesis.

Papers submitted for publication:
Morris T MBBS, Vink R PhD DSc, Turner R PhD. The Temporal Profile of Free Haemoglobin and Haptoglobin in a Rat Model of Subarachnoid Haemorrhage. Submitted for publication in *Neuroscience* November 2014

Abstracts presented:
Morris T MBBS, Vink R PhD DSc, Turner R PhD. The Role of Haptoglobin in Subarachnoid Haemorrhage. Presented at Neurosurgical Society of Australasia Annual Scientific Meeting, Perth, October 3rd 2014
Abbreviations

ABP – Arterial Blood Pressure

C – Centigrade

C1 – First Cervical Vertebra

CD163 – Cluster of Differentiation 163

CNS – Central Nervous System

CT – Computer Tomography

CSF – Cerebrospinal Fluid

HMG-CoA - 3-hydroxy-3-methyl-glutaryl-CoA reductase

DAB - 3,30 diaminobenzidine

DCI – Delayed Cerebral Ischaemia

DIND – Delayed Ischaemic Neurological Deficit

DND – Delayed Neurological Deterioration

ELISA – Enzyme Linked Immunosorbent Assay

Fe – Iron

Hb – Haemoglobin

Hb-Hp – Haemoglobin/Haptoglobin Complex

HO – Haem Oxygenase

Hp – Haptoglobin
ICA – Internal Carotid Artery

ICP – Intracranial Pressure

IgG – Immunoglobulin G

mm – Millimetres

mmHg – Millimetres of Mercury

NO – Nitrous Oxide

NHS – Normal Horse Serum

nm - Nanometre

PBS – Phosphate buffered saline

rpm – Revolutions Per Minute

SAH – Subarachnoid Haemorrhage

sCD163 – Soluble Cluster of Differentiation 163

SEM – Standard Error of the Mean

μm – Micrometre

μl - Microlitre
List of Figures

Fig 1. Schematic representation of the meninges and the subarachnoid space.

Fig 2. Catheter angiogram demonstrating saccular aneurysm arising from the bifurcation of the internal carotid artery

Fig 3. CT scans of the brain showing subarachnoid haemorrhage (left) versus normal findings (right)

Fig 4. Original illustrative description of surgical clipping of cerebral aneurysm.

Fig 5. Schematic representation of endovascular coiling of cerebral aneurysm

Fig 6: Right parietal burr hole placement and tunnelled sub-dural ICP monitor

Fig 7. Baseline telemetry reading of ICP (purple), ABP (red) and real-time calculated cerebral perfusion pressure (green)

Fig 8. Surgical dissection of left common carotid artery, with isolation of external carotid (fashioned into a stump)

Fig 9. Filament seen passing within the lumen of the internal carotid artery, about to enter the base of the skull, leading to the bifurcation into middle and anterior cerebral arteries

Fig 10. Screen capture at point of initiation of SAH.

Fig 11. Surgical exposure of posterior atlanto-occipital membrane for CSF sampling of cisterna magna

Fig. 12. Spectrophotometric quantification of CSF free haemoglobin

Fig. 13. ELISA quantification of CSF haptoglobin
Fig 14. ELISA quantification of CSF sCD163

Fig 15. CD163 immunohistochemistry
Acknowledgements

I would like to express my gratitude to the Neurosurgical Research Foundation for their ongoing support for neuroscience research at The University of Adelaide, and their generous financial support of my candidature.

Sincere thanks go to my supervisors Prof. Robert Vink and Dr. Renée Turner for allowing me to undertake a project I was passionate about.

To the Post-doctoral team in the Adelaide Neurosciences Research Laboratory who all had individual input during the experimental phase of my project - Dr. Emma Thornton, Dr. Francis Corrigan, Dr. Anna Leonard and Dr. Elizabeth Harford Wright – thanks and all the best.

Dr. Stephen Helps was particularly instructive in several areas of my project, particularly some technical aspects of the rat model, for which I am very grateful.

Mr. Jim Manavis and Ms. Sofie Kogoj at SA Pathology Neuroscience Laboratory were absolutely amazing, providing technical expertise that I couldn’t possibly have hoped to achieve myself.

Finally to Kortnye Morris, the mother of my children, thank you for your unending support.