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Abstract
Cellulose is a fundamentally important component of cell walls of higher plants. It provides a

scaffold that allows the development and growth of the plant to occur in an ordered fashion.

Cellulose also provides mechanical strength, which is crucial for both normal development

and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellu-

lose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley

accessions that were part of the USDA funded barley Coordinated Agricultural Project

(CAP) program in the USA. When the population structure of these accessions was ana-

lysed we identified six distinct populations, four of which we considered to be comprised of

a sufficient number of accessions to be suitable for genome-wide association studies

(GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and

genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome

containing significant associations between molecular markers and cellulose concentration

data, including one region cross-validated in multiple populations. To identify candidate

genes we assembled the gene content of these regions and used these to query a compre-

hensive RNA-seq based gene expression atlas. This provided us with gene annotations

and associated expression data across multiple tissues, which allowed us to formulate a
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supported list of candidate genes that regulate cellulose biosynthesis. Several regions iden-

tified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A
(HvCesA) across a range of tissues and developmental stages. These genes are involved in

both primary and secondary cell wall development. In addition, genes that have been previ-

ously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene

of unknown function, were also associated with cellulose levels in the association panel.

Our analyses provide new insights into the genes that contribute to cellulose content in

cereal culms and to a greater understanding of the interactions between them.

Background
Cellulose is crucially important to plant cell walls for several reasons. Through its presence in
the primary cell wall, cellulose provides a strong yet flexible scaffold allowing growth of cells,
while maintaining a defined structure and three-dimensional shape for the cell. In the second-
ary cell wall, which is produced once cells have stopped enlarging, cellulose provides the
mechanical strength necessary to support the plant against the forces of gravity and to help it
withstand biotic and abiotic stresses. For example, cellulose content per unit length of the culm
has been shown to be a major determinant of straw strength [1]. A weaker culm makes a plant
more prone to lodging, which leads to reduced grain yields. In secondary cell walls, cellulose
and non-cellulosic wall polysaccharides are often embedded in an amorphous lignin matrix,
together forming an abundant but relatively intractable bio-composite (lignocellulose) that has
great potential as a raw material in second generation biofuel production. Understanding more
about the genes regulating cellulose content will therefore contribute to several key global chal-
lenges related to crop yields and renewable bioenergy.

Cellulose is a long unbranched polysaccharide comprised of a chain of glucosyl residues
joined by glycosidic linkages between the first and fourth carbon atoms of a series of glucosyl
monomers, (1!4)- β-glucan. A sturdy and strong scaffold is constructed by multiple cellulosic
chains aligning to form a crystalline microfibril comprised of between 18 and 36 glucan chains
[2,3,4]. A single microfibril is believed to be synthesised by a complex of particle rosettes
located at the plasma membrane [5,6,7].

Previous studies have identified the CELLULOSE SYNTHASE A (CesA) genes as being cru-
cial in the synthesis of cellulose. The first CesA genes to be identified were GsCesA1 and
GsCesA2 in cotton [8]. In barley eight CesA genes have been described, six of which form two
groups of closely co-expressed genes [9]. Thus, HvCesA1, HvCesA2, andHvCesA6 comprise
group one, and group two is composed of HvCesA4, HvCesA7, andHvCesA8, with HvCesA3
andHvCesA5 falling into neither cluster. Group one has been implicated in primary cell wall
development, whereas group two has a clear role in secondary cell wall construction [9], based
on the types and developmental stages of the tissues in which they are transcribed. This means
that to some degree the expression patterns of these two groups of genes differ both spatially
and temporally. A recent study by Zhang et al [10] illustrated this at a very localised and
detailed scale by comparing expression patterns of the maize orthologs of these genes along an
elongating internode at stage V16 (when the collar of the 16th leaf is visible) [11]. When expres-
sion levels of genes from group one and two are compared across sections of the internode it is
only in section 1, the meristematic zone, that group one genes (ZmCesA2, ZmCesA5, ZmCesA7,
and ZmCesA8) have a higher level of expression than group two genes (ZmCesA10, ZmCesA11,
and ZmCesA13). This corresponds with increasing cellulose content from low levels in section
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1 (20% by weight), to section 10, the upper maturation zone where cellulose content reaches its
maximum of 42% by weight.

Mutation studies of genes involved in both primary and secondary cell wall development
have also helped to characterise and typify these processes. Mutations in genes such as PRO-
CUSTE1 (PRC1), which encodes AtCesA6 and RSW1 (AtCesA1), result in lower levels of cellu-
lose, coupled with gaps between cells and abnormally shaped cells due to restricted cell
elongation [12]. Mechanical strength for the plant overall is provided primarily by secondary
cell walls. The fragile stem locus described by Burton et al.[13], fs2, is the result of mutations in
HvCesA4. Two independent fs2mutants cause reductions of crystalline cellulose by 40% and
60% when compared with their respective wild type parental lines. As variation in cellulose con-
tent can be characteristic of both primary and/or secondary wall development, we may expect to
identify genes involved in either or both of these processes by carrying out a GWAS for this trait.

In addition to genes responsible for the synthesis of cellulose, several genes have been
shown to be involved in cellulose breakdown. These include members of several glycoside
hydrolase families [14]. There is also emerging evidence that some genes that encode polysac-
charide hydrolases from these families are actually involved in the synthesis of cellulose, espe-
cially with regards to plant development. The GH9 family includes endo-(1,4)-β-glucanases,
also referred to as cellulases [15]. One member of this gene family, known as KORRIGAN
(KOR) (HvCel1 in barley), has been studied comprehensively to demonstrate its role in cellu-
lose synthesis. In Arabidopsis, a reduction in crystalline cellulose coupled with an increase in
the amount of pectin and non-crystalline cellulose has been observed in mutant and T-DNA
insertion lines of kor. These lines also exhibit reduced cell elongation, have a dwarf phenotype
and reduced wall separation between cells [16–21].

Here we describe the results of a GWAS carried out to identify regions of the barley genome
associated with variation in cellulose concentration of the culm. Although such an approach
has been applied to understanding regions within the genome associated with cellulose content
inMiscanthus [22] and Populus [23], we are not aware of any other GWAS for this trait on
other members of the Poaceae, an economically important family of plants that includes
grasses and cereals. We quantified this trait in several sets of spring barley germplasm, chosen
to reflect both 2-rowed and 6-rowed breeding germplasm, as well as malting and feed type bar-
ley, currently the two main uses of this crop. The germplasm samples used in our analysis are
part of the USDA-funded barley CAP project and therefore represent accessions that are cur-
rently or have been included in contemporary breeding programs. We identified significant
associations in regions containing glycosyl hydrolases, and others that overlap with the map
positions of two other fragile stem loci, fs1 and fs3. Several of the regions contained genes
known to be highly co-expressed with HvCesA genes involved in both primary and secondary
cell wall development, and we show here that they are co-expressed across an extended range
of barley tissues, providing independent support for their role in determining final culm cellu-
lose concentration.

Material and Methods

Germplasm
Germplasm from six US spring breeding programs, each represented by 96 accessions (S1
Table) was grown and phenotyped for cellulose content. The germplasm has been described
previously by Hamblin et al. [24] and Zhou et al [25]. Here, a combination of both 2- and six-
rowed genotypes from the Montana (MT) and North Dakota (N2), Minnesota (MN), North
Dakota (N6) Washington (WA) and Utah (UT) programs were included. A list of the geno-
types used is given in S3 Table. All lines were genotyped with barley oligonucleotide pool assays
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(BOPA) 1 and 2 yielding data for 3,072 SNP loci in total per individual [24, 26]. The BOPA
assays were designed using Expressed Sequence Tags (ESTs), therefore all of these SNP loci
reside in protein coding regions of the genome. Genotypic data can be accessed at http://www.
hordeumtoolbox.org/.

Phenotyping
The barley accessions were grown according to standard agronomic practices at the Minnesota
Agricultural Experiment Station on the St. Paul campus of the University of Minnesota in
2008. Plots consisted of 30 cm long rows sown with a four-row planter with the centre two
rows being the test entries and the two outside rows the border plots. Two grams of seed was
used for each plot with 30 cm spacing between entries within a row and between rows. The
experiment was conducted using a completely randomized design. When plants reached matu-
rity, (hard dough stage, and leaf tissue all senescent), all lines were harvested within the same 3
day interval at the end of the season and tissue was sampled from one internode (the first
below the peduncle). Internode tissue from at least three culms was bulked and ground per
line. Crystalline cellulose was determined by the acetic acid/nitric acid method [27], with modi-
fications as described in [28] and is presented in Tables 1 and 2.

Genetic analysis
GenALEx 6.5 [29] was used to construct a genetic distance matrix and carry out a principal
coordinates analysis (PCoA) to identify subgroups within the data set based on differences in

Table 1. Cellulose quantities by breeding program and subpopulation in barley culms.

Abbreviation Breeding program sample size mean cellulose concentration range of cellulose concentration

WA Washington 94 0.394 0.222–0.464

MT Montana 96 0.433 0.340–0.497

N2 North Dakota 84 0.456 0.264–0.648

UT Utah 96 0.409 0.292–0.498

N6 North Dakota 94 0.361 0.035–0.477

MN Minnesota 96 0.402 0.179–0.459

All 560 0.408 0.035–0.648

Sample size, mean cellulose concentration, and range of cellulose concentration in mg cellulose / mg dry weight.

Populations are based on Barley CAP breeding programs.

doi:10.1371/journal.pone.0130890.t001

Table 2. Cellulose quantities by subpopulation defined by STRUCTURE in barley culms.

Subpopulation sample size mean cellulose concentration range of cellulose concentration

1 18 0.418 0.364–0.468

2 84 0.356 0.035–0.427

3 87 0.401 0.264–0.648

4 98 0.401 0.179–0.459

5 183 0.414 0.222–0.597

6 58 0.405 0.292–0.498

All 528 0.399 0.035–0.648

Sample size, mean cellulose concentration, and range of cellulose concentration in mg cellulose / mg dry weight.

Populations are based on subpopulations lines were assigned to after STRUCTURE analysis.

doi:10.1371/journal.pone.0130890.t002
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allele frequency. We then visualised the first 3 principal coordinates using CurlyWhirly (http://
bioinf.hutton.ac.uk/curlywhirly). The Bayesian clustering method STRUCTURE [30] provides
Fst values by population, allowing quantification of differentiation between subgroups. Because
our PCoA analysis grouped the data into between 5 and 9 subgroups, and Evanno et al., [31]
suggest testing a range of values starting at 1 or 2, up to and including the true number of popu-
lations plus 3, we used 2 to 12 as our priors (K values) for STRUCTURE [30]. The admixture
model was selected with a burn in length of 10 x 103 and Markov Chain Monte Carlo (MCMC)
of 10 x 103 using 20 reps per value of K. The results file was uploaded into Structure Harvester
v0.6 [32] to estimate the most likely number of populations within the dataset (ΔK) [31]. This
corresponds to the K value with the highest ΔK. Linkage disequilibrium (LD) was calculated
using Haploview [33] for both the entire dataset, and for the four subpopulations with more
than 88 lines.

In total 2,842 markers that had less than 10% missing data and minimum allele frequency
(MAF)>5% were included in the GWAS analysis in Genstat v.14 (VSN International). A null
and kinship analysis, using a kinship matrix also generated in GenStat was performed. This
analysis was carried out using the subpopulations identified as described in the previous section
separately. A stringent false discovery rate (FDR)< 5% was calculated using the qvalue pack-
age [34] in R version 3.1.1 (R core team 2014) to provide adjusted p values. This set the signifi-
cance threshold to (-log10 p� 3.0) for the adjusted p�0.05, and (-log10 p� 5.69) for the
adjusted p�0.001. Significant SNPs (−log10 p� 3.0) positioned within 5 cM were considered
to be linked to the same QTL, with the most significant SNP chosen as representing the QTL.
Package stats in R Statistical Computing Environment (R Development Core Team 2014) was
used to calculate the measure of association between the marker and the phenotype, the cellu-
lose content. As the data was not expected to follow bivariate normal distribution, the squared
rank-based correlation coefficient was calculated based on Kendall’s tau statistic.

Nomenclature for identified QTLs broadly follows that described in [35] and OWB-DGGT
(http://wheat.pw.usda.gov/ggpages/maps/OWB/), using Cel as an abbreviation for cellulose
content.

Regions that contain significant associations with cellulose concentration were anchored
using the barley sequence assembly and map positions determined for all markers that had a
significant association with the trait using three genetic maps, a 9K i-Select map [36], the Barley
Genome Zipper [37], the POPSEQ map [38] and one physical map, i.e. the barley genome
assembly [39]. However in Table 3 we just provide the name of the marker with the highest
LOD score for each region that showed a significant association with cellulose content. These
genetic and physical maps were used in combination with http://floresta.eead.csic.es/
barleymap/ to provide annotations for genes within the intervals identified by the association
analysis. When querying http://floresta.eead.csic.es/barleymap/, we extended the interval by
2.5 cM in both directions from markers that flanked our QTL (i.e. a total of 5cM) to take
account of map order uncertainty and LD.

For those genes that we considered to be candidates for influencing cellulose content in the
culm we referred to the barley genome assembly [39] to extract information on gene expression
in the third internode of the culm, a similar tissue to that assayed in the current experiment.

For those genes that we suspected to be the most likely candidates for influencing cellulose
content we compared expression patterns across a range of tissues using data from the IBSC
[39], and our unpublished data. The developmental stages and tissues are embryo (germinat-
ing), root (10cm seedlings), shoot (10cm seedlings), inflorescence (0.5cm), inflorescence (1–
1.5cm), tillers (3rd internode), grain (5 days post anthesis (DPA)), grain (15 DPA), etiolated
(10 day seedlings), lemma (42 days after planting (DAP)), lodicule (42 DAP), palea (42 DAP),
epidermis (28 DAP), rachis (35 DAP), root (4 week seedling), and senescing leaf (2 months).
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The gene expression data are available as normalised transcript abundance in fragments per
kilobase of exon per million fragments mapped (FPKM). Details regarding how the reads were
mapped, total number of reads per stage and how FPKM was calculated can be found in IBSC
2012 [39]. For groups of genes we identified as being coexpressed we retrieved the rice ortho-
logs and expression levels in 16 tissues from http://rice.plantbiology.msu.edu/. The genetic
position of these associations was compared to that of introgressions containing mutant alleles
of fragile stem (fs) loci, namely fs1 on chromosome 5H, fs2 on 1H, and fS3 on 7H, [40] as these
have been shown to have decreased cellulose content in the culm.

Results

Population structure and linkage disequilibrium
The first axis of the PCoA explained 58% of variation within this dataset, clearly separating
lines based on row type (Fig 1). Axis 2 and 3 explained a further 15.6% and 11.5% respectively.
The PCoA identified between 5 and 9 putative subpopulations. Structure analysis showed that
there was clearly admixture in some subpopulations, and ΔK indicated that the most likely
number of subpopulations within the dataset was 6 (Fig 1, S1 Fig). Setting the shared ancestry
threshold, Q, to 0.6 allocated individual lines into the populations summarised in S2 Table,
with more detail provided in S3 Table. Lines that did not meet these criteria were excluded
from further analysis. Intra chromosomal LD analysis revealed that the average extent of LD
across all chromosomes varied between subpopulations when they were analysed separately
(pop2 = 21.2cM, pop 3 = 10.8cM, pop 4 = 7.5cM, and pop5 = 13.2 cM). The average extent of
LD was much smaller when all lines were analysed together (5.5cM).

Cellulose concentration
For all subpopulations most lines (between 61.5–100%) had between 0.3 and 0.5 mg cellulose
/mg of dry weight. The average concentration of cellulose differed significantly among breeding
programs [F (4) = 3.58, p = 0.007], ranging from 0.39 mg cellulose /mg of dry weight (MN) to
0.43 mg cellulose /mg of dry weight (MT) (Fig 2). Sample size, mean cellulose concentration,
range of (cellulose concentration) values, and heritability (of cellulose concentration), within
each breeding program and subpopulation as well as across all lines can be found in Table 1.

GWAS
GWAS on each of the four largest subpopulations individually (subpopulations 2, 3, 4 and 5),
detected nine regions containing significant associations (using a FDR corrected adjusted p
value of −log10 p�3.0 with adjusted p�0.05) with cellulose concentration (Table 3, S4 Table,
Fig 3). Significant associations were detected in the two two-rowed subpopulations (subpopula-
tions 3 and 5) but not in the two six-rowed subpopulations (subpopulations 2 and 4). The larg-
est subpopulation, subpopulation 5, was the germplasm in which we detected most
associations, and several had adjusted p values of p�0.001 (−log10 p�5.69) (Table 3,S4
Table). A further significant association was identified in subpopulation 3. GWAS was not car-
ried out on populations one and six due to the small number of individuals in each. When con-
sidering the PCoA (Fig 1) it is quite clear that the two rowed subpopulations, subpopulations 3
(dominated by N2), and 5 (mostly consisting of WA and MT) are almost as distinct from each
other as they are from the six rowed subpopulations 2 and 4.

We focused our attention on these 9 loci, in particular those regions for which annotations
of closely associated genes implied a possible functional link to cellulose content. Regional gene
content and gene annotations were derived from the barley, Brachypodium, and rice genome
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Fig 1. Genotypic data and population structure analysis. (A) Principal coordinates analysis of all lines
phenotyped, colour coded by breeding program. (B) STRUCTURE bar plot for K = 6 based on bOPA 1&2
genotyping data for spring barley lines ordered by breeding programs, but colour coded by K value. Please
note colours in A. are independent to those in B. Breeding program 1 =Washington (WA), 2 = Montana (MT),
3 = 2- row North Dakota (N2), 4 = Utah (UT), 5 = 6-row North Dakota (N6), and 6 = Minnesota (MN). Colours
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assemblies (Table 3) using the resources described in the material and methods. This allowed
us to predict putative candidate genes for 7 of the 9 associations. The candidates fell within
three groups dictated by function; primary cell wall cellulose synthesis, secondary cell wall cel-
lulose synthesis, and glycoside hydrolases. We then referred to deep RNA-seq expression data
across multiple tissues and developmental stages to explore patterns of expression for each of
the candidate genes [39]. Although cellulose content in the current study was assayed using the
first internode, a dataset from the 3rd internode of the culm was included in the IBSC study.
We used these data to help prioritise an individual candidate gene’s likely contribution to cellu-
lose content. We did not strictly interpret lack of expression as ruling a gene out of having a
role in cellulose content; however, we did assume that those expressed in the target tissue are
more likely to be important for the trait.

Glycosyl transferases (GT) and associated genes
Several regions identified in our analysis included members of GT gene families [14]
(QCel1H2, QCel5H2, QCel6H1, and QCel7H1), such as the cellulose synthase (HvCesA) genes
of the GT2 family of glycosyl transferases [41, 42] that have been shown to influence cellulose
content. Supportive of the GWAS approach was the identification of a region containing
HvCesA9 (QCel6H1), a member of the GT2 family that shows very high levels of transcript
abundance in the 3rd internode (777.1 FPKM) and has high sequence similarity toHvCesA6,
which itself is associated with primary cell wall cellulose synthesis [9]. Another member of the
GT2 family, a gene with a known function in (1,3;1,4)-β-glucan synthesis during primary cell
wall development, CELLULOSE SYTHASE LIKE F6 (HvCslF6) [43], is located within the region
under QCel7H1 on chromosome 7H. This gene is represented by MLOC_ 572000 and shows
high levels of transcript abundance in the culm tissue (244.1 FPKM). Further support for the
validity of our approach was provided by associations that collocated with two of the three frag-
ile stem loci known in barley: fs1 on chromosome 5H (QCel5H1) and fs3 on chromosome 7H
(QCel7H1) [40]. Burton et al., [13] demonstrated that the fs2 brittle stem mutant on chromo-
some 1H was attributed to the insertion of a retroelement in the first intron of the CesA4 gene.
Another gene annotation within the introgression on chromosome 7H containing fs1 is
MLOC_19933, which is known to be a transcription factor master switch of secondary wall
development. This gene is an ortholog of AtVND7 which activates transcription of several
MYB transcript factors, including MYB46, that regulate secondary cell wall development in
Arabidopsis [44].

Glycoside hydrolases
Genes encoding glycosyl hydrolase enzymes (GH) were found in three of the nine regions asso-
ciated with cellulose levels (QCel5H1, QCel5H2, and QCel5H3), including members of families
GH1, GH3, GH9 and GH19 [14]. These glycosyl hydrolase families have been previously
shown to hydrolyse the glycosidic linkages between the β-linked glucosyl residues in cellulose
or cellodextrins, with the exception of the GH19 family, which includes chitinases and lyso-
zymes [14]. Some members of the GH1 family, which include β-glucosidases and the Cobra-
like enzymes, have been discussed above. One of the candidate gene annotations for QCel5H2
was HvCel2, which is a member of hydrolase family GH9 and is closely related toHvCel1, also

represent subpopulation defined by shared genetic ancestry. Q value represents proportion of ancestry to a
given subpopulation. (C) Output from Structure Harvester showing K as calculated based on ΔKmethod, in
this case K = 6. L(K) represents the likelihood distribution of K, and L”(K) represents the second order rate of
change from L(K).

doi:10.1371/journal.pone.0130890.g001
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Fig 2. Phenotypic data used to carry out a genomewide association study (GWAS). (A) Mean culm cellulose content for 2-row and 6 row spring barley
accessions by breeding program. (B) Mean culm cellulose content for all lines to illustrate the distribution of this trait in the barley CAP programs included in
this analysis.

doi:10.1371/journal.pone.0130890.g002
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known as KOR [15]. This GH family includes endo-β-glucanases, which have been implicated
in cellulose synthesis [2], and cellobiohydrolases, which are important in the complete depoly-
merisation of cellulose to glucose [14]. However, it must be noted that the GH9 family also
includes endo-xylanases and xyloglucanases [14].

Co-expression across various tissues and developmental stages
We were interested to see if any of the candidate genes from the GWAS were co-expressed, as
this could provide further evidence for their being responsible for the association peaks identi-
fied. This is particularly relevant for understanding variation in cellulose content, because the
synthesis of cellulose is likely to involve a number of co-factors and interacting proteins. The
co-expression analysis allowed us to prioritise genes on our list of potential candidates in
Table 3. We extended the number of tissues and developmental stages for which we compared
candidate gene expression to sixteen (our unpublished data). When we considered the data for
the 14 candidate genes from the nine regions highlighted in Table 3, we observed that five
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could be classified into two groups of co-expressed genes, groups 1 and 2, which are strongly
co-expressed based on pairwise regression analysis between each gene across these 16 tissues
with members of the CesA gene family (Fig 4). The output from the regression analysis can be
found in S5 Table. Group 1 genes comprised HvCobra1,HvCslF6, andHvCesA9 (a close ortho-
log /paralog ofHvCesA6), and formed a co-expression complex across the 16 different tissues
withHvCesA1,HvCesA2, and HvCesA6, genes previously implicated in primary cell wall cellu-
lose biosynthesis [9]. Group 2 genes, HvChitinase and HvUDP-glucosyltransferase (HvGT),
were co-expressed with genes important for secondary cell wall development, namely
HvCesA4, HvCesA7, andHvCesA8. Where possible we compared the coexpression of the rice
orthologs of these genes, however there was no ortholog of HvCslF9 or HvChitinase1. Across
both species we observed that genes in group 1 showed a higher and more significant degree of
coexpression than those in group 2, with the expression of the candidate genes in barley show-
ing a higher correlation to the known primary and secondary cell wall genes than their rice
orthologs (S5 Table).

Discussion
The barley CAP program, from which the plant material used in the current study was sourced,
is based upon a well-studied set of accessions. Several papers describe the population structure
within this germplasm [24,25,45], and more recently a GWAS for one quality trait, grain pro-
tein content, and five agronomic traits, plant height, heading date, percent kernel plump, grain
test weight, and yield, has been published [45]. While we used only a subset of the germplasm
from the CAP project in our analysis, our population structure analysis broadly agrees with the
groups identified by others [24,25,45]. From the germplasm we sampled here, the program
STRUCTURE resolved six sub-populations and due to sample size constraints we used only
four of these separately in our analyses.

Using GWAS, we identified associations between cellulose content and nine regions of the
barley genome in three subpopulations of 2-rowed barleys. Analysis of subpopulations 2 and 4,
which are comprised of six-rowed barley lines, failed to identify any significant associations
with cellulose content using FDR correction. This was likely due to limitations of our GWAS in
terms of numbers of lines and numbers of SNPs used. This also indicates a relatively narrow
gene pool, with the North Dakota 6 rowed program (N6) which constitutes subpopulation 2
having the narrowest genetic diversity [25]. Consequently greater population size, and, or
marker density would likely provide higher confidence in our genetic results. However, despite
the relatively low genetic resolution, by using the barley genome assembly [39] we were able to
anchor the regions in which associations were detected, and screen gene annotations within
them for putative candidate genes that could possibly be related to cellulose content. This pro-
vided us with a list of genes, and we subsequently used a gene expression atlas to further inves-
tigate their candidature based on tissue specific expression and patterns of co-expression with
members of the CesA gene family and other genes known to be involved in cellulose synthesis.

While several GWAS studies concerning cellulose content have been carried out to date
[23,46–48], none to our knowledge have specifically focused on barley. However, it has been
the focus of QTL mapping studies taking a biparental mapping population approach [49–54].
These studies allowed us to compare the associations identified in our current work with the
work of previous authors, and gauge how many of our associations are supported by the litera-
ture, and how many appeared novel/specific to the germplasm we have surveyed. Previous
studies did identify QTLs collocating with either members of gene families highlighted in our
current analysis, and/or genes that we observed were co-expressed with our candidate genes.
Two QTL studies in Eucalyptus nitens [48,49] consisting of 420 and 296 individuals,
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Fig 4. Co-expression of two groups of genes (HvCesA9,HvCobra1,HvCslF6, andHvChitinase,HvGT1) identified by GWAS as putatively linked to
culm cellulose content withHvCesA genes known to be involved in primary and secondary cell wall development. Transcript abundance across a
range of tissues shown in fragment per kilobase of exon per million fragments mapped (FPKM) for group 1, primary cell wall includingHvCesA1, HvCesA2,
andHvCesA6 (A) for reference, and group 2, secondary cell wall includingHvCesA4, HvCesA7 andHvCesA8 for reference (B). Abbreviations for tissues/
developmental stages as follows; EMB = Embryo tissues (germinating), ROO = Root (10cm seedlings), LEA = Shoot (10cm seedlings), INF1 = Inflorescence

GWAS for Cellulose Content in Barley

PLOS ONE | DOI:10.1371/journal.pone.0130890 July 8, 2015 13 / 21



respectively, identified a QTL in a region of the genome which includes EniCOBL4, an ortholog
of AtCOBL4, which is in the same gene family as the two COBRA genes identified in our analy-
sis. In poplar, the ortholog of one of the CesA genes that is implicated in secondary cell wall
synthesis and co-expressed with genes identified in our analysis, PtiCesA7-B, was also found to
be associated with cellulose content in a GWAS [23]. Collocation of a QTL for cellulose content
and hemicellulose content in sorghum was reported in two bi-parental mapping populations
[53,54]. Moreover, a recent GWAS for (1,3:1,4)-β-glucan content in the CAP populations [55]
identified a QTL for this trait which maps to the same cM position as the most significant
marker defining QCel7H1 reported in the current study.

Leveraging the barley genome assembly and published (and unpublished) RNA-seq expres-
sion data [39], we were able to highlight genes potentially contributing to variation in cellulose
content based on annotation and subsequently by comparing their expression patterns to the
CesA genes that are central to cellulose synthesis. This identified a group of co-expressed genes
linked to primary cell wall cellulose synthesis and a second group involved in secondary cell
wall development. For the primary cell wall group, there is also evidence from the literature
that the genes highlighted by our analysis are co-expressed, and potentially involved in a regu-
latory complex [9].HvCobra1, a likely ortholog of ZmBk2L3, has been shown in maize to be
co-expressed with primary cell wall CesA genes [56]. TheHvCslF6 gene is down-regulated by a
small interfering RNA antisense transcript of HvCesA6, illustrating the link between several of
these co-expressed genes [57]. The current work provides independent evidence of the co-
expression of these genes, and their possible involvement in enzyme-protein complexes.

The secondary cell wall association group includesHvCesA4,HvCesA7,HvCesA8,HvChiti-
nase, andHvGT1 (MLOC_66574) (Table 3). The Arabidopsis homolog ofHvChitinase, AtPom1,
has previously been shown to be co-expressed with genes involved in primary cell wall develop-
ment in seedlings and mature roots, rosette leaves, various floral tissues, and siliques, and has
been described as having a role in cellulose microfibril assembly [58]. However, while we
observed similar patterns of expression to the primary cell wall CesA genes in equivalent tissues,
a survey of the 16 tissues available from the barley genome assembly [39] we revealed a strong
trend of co-expression with the secondary cell wall CesA genes. This does not disprove the
hypothesis of Sanchez-Rodriguez et al., [58], that chitinases such as AtPom1 bind to cellulose
microfibrils during assembly to regulate this process, but instead suggests a role in both pro-
cesses, depending on the tissue. It must be noted that plants and their cell walls do not contain
chitin and that the chitinases have long been identified as pathogenesis-related proteins that are
involved in defence against fungal pathogens [59]. Finally, a putative role for theHvGT1, a UDP-
glucosyltransferase, in secondary cell wall synthesis has yet to be proposed, however the enzyme
is has been annotated as a 3-O-glucosyltransferase and a UDP-glucosyl transferase [14] and may
be involved in the provision of the UDP-glucose donor substrate for cellulose biosynthesis.

Two regions associated with cellulose content, QCel6H1 and QCel7H1, include members of
glycosyl transferase family 2, namely HvCesA9 on chromosome 6H and HvCslF6 on chromo-
some 7H. In addition, QCel5H3 on chromosome 5H contained genes annotated as COBRA—
LIKE (COBL). There is evidence from mutant studies that the COBRA gene family influences
cellulose content based on a reduction in cellulose content in coblmutants. Schindelman et al.
[60], described COBmutants as having reduced cellulose content in the elongation zone of the
root where the orientation of cell expansion increased in a radial direction compared to the

(0.5cm), INF2 = Inflorescence (1–1.5cm), NOD = Tillers (3rd internode), CAR5 = Grain (5 Days Post Anthesis—DPA), CAR15 = Grain (15 DPA),
ETI = Etiolated (10 day seedlings), LEM = Lemma (6 weeks Days After Planting—DAP), LOD = Lodicule (42 DAP), PAL = Palea (42 DAP), EPI = Epidermis
(28 DAP), RAC = Rachis (35 DAP), ROO2 = Root (28 DAP seedling), SEN = Senescing leaf (63 DAP).

doi:10.1371/journal.pone.0130890.g004
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wild type (that exhibited longitudinal expansion in this zone). Based on work using the cob-1
Arabidopsis mutant, COB was subsequently implicated in the deposition of cellulose microfi-
brils in the primary cell wall of developing roots [61]. MLOC_55526, the likely ortholog of
AtCOB [57], falls within the interval identified on chromosome 5H, which is significantly asso-
ciated with cellulose content. This gene is also expressed highly in the 3rd internode of the culm
(482.2 FPKM) and is co-expressed with three members of the CesA family, ZmCesA1,
ZmCesA2, and ZmCes6. MLOC_11345.4 is the best blastn hit for ZmBk2L3, a maize gene previ-
ously shown to be co-expressed with the CesA genes. Bk2 is another gene that encodes a mem-
ber of the COBRA LIKE family, a likely ortholog of AtCobL4, and shows high levels of
correlated co-expression with AtCesA10, AtCesA11, and AtCesA12, genes involved in second-
ary cell wall development. Plants with the mutant allele of Bk2 show a reduction in cellulose
content in the culm and this is thought to be due to a fault in the cellulose synthase complex.
Ultimately, this not only reduces the cellulose content but leads to a reduction in mechanical
strength of the culm [62]. The mechanism by which a COBRA co-expressed with the secondary
cell wall associated CesA genes influences cellulose crystallization has recently been described
[63]. The NH2- terminal region of the protein encoded by Brittle Culm1 (BC1), a COBRA-LIKE
gene, contains a carbohydrate binding module that interacts with crystalline cellulose and
determines the size of microfibril crystallite size, regulating cellulose assembly [63]. To our
knowledge the equivalent mechanism for the COBRA-LIKE genes associated with primary cell
wall CesA genes is yet to be described.

We identified additional genes in regions associated with cellulose content that are known
to have an impact on secondary cell wall development in barley. QCel5H1 in population 5 on
chromosome 5H co-locates with the introgression of fs1 [40]. Similarly, a region identified as
being associated with cellulose content on chromosome 7H, QCel7H1 in population 3, overlaps
with the introgression known to contain fs3 [40]. Both fs1 and fs3mutant accessions have
reduced mechanical strength in their culms; a phenotype commonly linked to mutations in
genes involved in secondary cell wall synthesis. Burton et al. [13] identified GH17 genes as
being differentially transcribed in the maturation zone of internodes of stems from a wild type
barley line (Kobinkatagi (J066)) and M382, a near isogenic fs3mutant line. The same authors
[13] also showed that the fragile stem phenotype of fs2, not identified in the current study, was
due to a retroelement in theHvCesA4 gene, thereby illustrating the link between the fragile
stem loci and key genes known to determine cellulose content.

Three of these nine regions contain members of the glycoside hydrolase families GH1, GH3,
GH9, and GH19, which have previously been implicated in cellulose synthesis and degradation
[64]. Several glycoside hydrolase (GH) families are capable of hydrolysing (1,4)-β-glycosidic
linkages in cellulose and other polysaccharides, together with oligosaccharide products gener-
ated by endo-hydrolase activity [14]. Therefore, (1,4)-β-glucan endohydrolases (cellulases) of
the GH9 families can hydrolyse cellulose chains, although their activity on crystalline cellulose
is generally low. Certain β-glucosidases and β-glucan exohydrolases of the GH1 and GH3 fami-
lies hydrolyse oligosaccharides derived from cellulose by endo-hydrolase action. An association
identified on chromosome 6H contained a GH9 gene, which includes the endo-(1,4)-β-gluca-
nases (cellulases)[64]. By constitutively expressing a poplar cellulase gene (PaPopCel1) in Ara-
bidopsis thaliana, Park et al., [65] concluded that this group of enzymes trims noncrystalline
regions of a cellulose molecule, releasing the trapped xyloglucan from the cellulose microfibrils.
Cosgrove [2] also highlighted the potential role of the cellulase gene KOR in the maintenance
of normal development of cellulose microtubules in terms of proper crystallisation into micro-
fibrils. QCel5H1 on chromosome 5H contained an ortholog of AtCTL1, which is a GH19
(HvChitinase) and has been implicated in cellulose synthesis and assembly [59, 66] in both the
primary and secondary cell walls [67].
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We carried out our GWAS using subpopulations identified by rigorous population genetics
analysis as described in [68]. We did also consider whether the Q +K method in Tassel version
5.2.6 [69]would be suitable for this germplasm set using a trait, row type, which is both geneti-
cally well characterised and simple compared to cellulose content. Row type is represented by
equal numbers of two rowed and six rowed accessions in our germplasm, and the key genes
influencing this trait are either cloned i.e.HvVrs1 on 2H [70],HvInt.c on 4H [71],HvVrs4 on
3H [72], or have been delimited to a small interval i.e. HvVrs2 on 5H andHvVrs3 on 1H [40].
We know from Ramsay et al., [71] that taking a population of two and six rowed lines can
detect row type genes when a kinship matrix is applied. However even if we used a relaxed
adjusted p- value after FDR of p<0.05 no significant associations were identified (S2 Fig, S6
Table). The strongest association with row type was identified using marker 12_30880 on 7H,
with a—log10 (p) = 3.42, and (non-significant) adjusted p value = 0.53. We also observed very
different patterns of LD between subpopulations and with different regions showed LD
depending on subpopulation. A much faster rate of LD decay was observed when the dataset
was analysed as whole compared to when subpopulations were analysed separately, concurrent
with Mohammadi et al. [73]. Taken together with the clear divisions within this germplasm
evident from population structure analysis we decided that analysing all lines together might
“dilute” any potential population specific marker trait associations.

Conclusion
In summary, the GWAS analysis revealed a number of candidate genes that are likely to influ-
ence cellulose synthesis in barley. Participation of the products of these genes in cellulose bio-
synthesis has, in many cases, been validated in previous QTL analyses of biparental mapping
populations and through biochemical, co-expression and other approaches that link these
genes to the cellulose synthesis process. Of particular importance is the possibility that one of
the products of these candidate genes interacts directly with the CESA enzyme to form an
active complex. Despite the best attempts of many groups around the world over several
decades, expression of CesA genes in cell-free systems has rarely produced credible levels of cel-
lulose synthesis in vitro. A possible explanation for this has been presented by Morgan et al.
[74] who showed that the cellulose synthase enzyme (designated BcsA) in the bacterium Rho-
dobacter was inactive in the absence of a second protein (BcsB) and solved the three-dimen-
sional structure of the two co-crystallised proteins of the active complex. If higher plant CESA
enzymes also require a second partner to form an active cellulose synthase complex, one of the
candidate genes identified in the present GWAS analysis might encode the ‘missing’ partner
protein. This possibility can now be explored through further validation of the role of these
candidate genes using transgenesis and directed mutagenesis approaches, co-expression in het-
erologous expression systems and through in vitro assays.
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S1 Fig. Bar plot outputs from STRUCTURE for K values ranging from 2 (A) and 7 (F).
Breeding program 1 =Washington (WA), 2 = Montana (MT), 3 = 2- row North Dakota (N2),
4 = Utah (UT), 5 = 6-row North Dakota (N6), and 6 = Minnesota (MN). Q value represents
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