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Summary

The Internet is by definition a network of networks. No-one operates, or

controls more than a small slice of the overall Internet. A large number

of network providers manage their own, independent networks, and these

then interconnect to create the world-spanning artefact we call the Internet.

These Internet Service Providers (ISPs) are highly heterogeneous – they vary

widely in scale, technology, objective, and management policies. However,

they have some general features in common, and in particular they all engage

in some kind of network management.

Network management consists of a variety of tasks and activities, includ-

ing performance analysis, detection of network anomalies or fraud, traffic

engineering, and capacity planning.

Some of the activities we wish to conduct as part of these tasks are

apparently not possible without co-operation. However, these companies

also compete, and much of the information that they would need to share

to co-operate is secret!

For the last 40 years a field of cryptology has been growing, named

Secure Multiparty Computation (SMC). It offers protocols for multiple par-

ties to compute functions without revealing their respective inputs to each

other. These techniques have come a long way from the earliest theoretical

ideas, now offering practical solutions for wide-ranging problems including

electronic voting, auctions, or data mining. Despite the maturity of this

exciting work on SMC, there remains relatively little research in the context

of network management.

xvii



In this thesis, we apply concepts of SMC to problems within network

management.

Importantly, SMC techniques generate significant overheads because they

use cryptographic primitives to enable secure computation. With this in

mind, the first half of this thesis we attempt to improve the practicability of

SMC. Specifically, we show a new implementation of Yao’s two-party secure

function evaluation protocol with significantly better performance than pre-

vious implementations. Its low memory footprint enables the evaluation of

bigger circuits with less memory.

We then demonstrate a secure scaling protocol which enables two par-

ties to convert real-numbered privacy-preserving problems into the integer

domain by scaling, as almost all techniques for SMC support only integer

inputs and operations. Our approach does not limit the choice of SMC tech-

niques for the privacy-preserving problem, nor does it introduce additional

overheads compared with previous solutions. The core of our protocol is a

novel algorithm for privacy-preserving random number generation.

In the second half of the thesis, we present two examples of how to apply

SMC to network management.

First we present a distance-vector routing protocol that allows routers

to compute the shortest paths without learning the distances of any paths.

Whereas previous solutions relied on trusted third parties for route compu-

tation, we maintain the distributed nature of a routing protocol. The basic

components of the protocol can easily be extended to implement other types

of path metrics.

The second example is a protocol for privacy-preserving fraud detection.

It enables telecommunication providers to co-operate in detecting subscrip-

tion fraud without violating protection laws for phone records. We present

several protocols for call-signature based subscription fraud detection with

different levels of privacy, enabling providers to mine each others fraudster

databases.



In all cases we present implementations, and we use these to show that

SMC-based protocols are practical and may be highly beneficial to network

operators.



Chapter 1

Introduction

The Internet, which started as a single research network, soon grew to be a

large collection of interconnected autonomous networks. With the opening

of the Internet to commerce in the late 1980s companies started to appear

which provided Internet access to businesses and home users. This develop-

ment changed the Internet from having a research and education focus to

the diverse multipurpose network of today. These Internet Service Providers

(ISPs) are highly heterogeneous - they vary in scale, technology, objective

and management policies. However, they all have to engage in some kind of

network management. It consists of a variety of tasks.

• Routing involves exchanging reachability information and finding routes

through the Internet to all destinations to provide access to the Inter-

net.

• Traffic Engineering is the optimisation of routing policies according

to traffic management goals. We distinguish between intra- and inter-

domain traffic engineering; that is, optimising routing policies within

one network or optimising between several networks.

• Performance Analysis is a part of quality control. To maintain and

improve the quality of service, measurements are essential.

1
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• Capacity Planning is the optimisation of link capacity and choice of

location.

• Detection of network anomalies is essential in network management in

order to react quickly to outages, attacks and fraudulent customers.

Some of these tasks require co-operation with other networks, for instance,

routing cannot work if there is no exchange of reachability information.

Other tasks would strongly benefit from co-operation. For example, co-

operative anomaly detection can locate the anomaly more easily and pre-

cisely, and co-ordinate better counter measures. Selfish inter-domain traffic

engineering falls short in performance compared with co-operative traffic en-

gineering [99]. Internet performance is an issue of great interest, but it is

not trivial to measure across multiple networks without co-operation.

Pertinently, although co-operation may be beneficial for the ISPs, they

also compete and much of the information they would need to share to co-

operate is considered secret.

1.1 Secrets in the World of Networks

There are several kinds of information an ISP may not want to reveal to its

competitors.

• Topology: the physical and logical structure of the network.

• Policies: a description of the business relationships between neighbour-

ing ISPs, the configuration of the network, and the different QoS for

different customers.

• Operational Data: for example, the utilisation of the network.

• Customer information: names, locations, usage history and current

contracts.
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The reasons for keeping these kinds of information secret can be:

• Commercial concerns: the network topology or policies might give the

ISP an advantage over its competitors.

• Privacy: an ISP might be obligated to ensure its customers’ privacy

either through legislation or customer agreements.

• Embarrassment / fear of the unknown: the relationship of trust be-

tween the ISP and its customers, and its overall image would suffer in

the case of a disclosure of poor network design or management. The

description of ’poor’ might be attached ex post facto to a network

management technique – hence fear of unknown future consequences.

• Security: attackers may use information about the topology of a net-

work to fine-tune their attacks.

1.2 Information Sharing

As there is no centralised authority managing the Internet, the ISPs have

to co-operate to make it work. But co-operation is not possible without

information sharing. We delineate between two such types:

Mandatory Sharing In order to make the Internet functional, the ISPs

must share certain information. For instance, routing could not take place

if the ISPs did not share reachability information.

Voluntary Sharing As explained earlier, co-operation can be beneficial

for ISPs. They may gain an advantage if they share certain information

voluntarily.

ISPs perform mandatory sharing, but only perform voluntary sharing in

isolated cases. The conflict between privacy and sharing is leaning towards
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privacy. It appears that the anticipated losses through sharing seem to be

greater than the expected gains. In this thesis we present techniques to

enable co-operation without the need to reveal private information, thus

making co-operation more attractive.

1.3 Secure Multiparty Computation

Secure Multiparty Computation (SMC) protocols enable parties to carry out

distributed computation tasks without revealing their inputs to one another.

At the end of the protocol no party knows anything except its own input

and the result of the computation.

Example: Secure Sum Alice, Bob, Charlie and Dora want to know their

average wage. However, they do not want to reveal their respective wages

to each other. One solution for this problem is to engage in a secure sum

protocol, as follows:

• First they have to agree on an Integer n which must be bigger than

the possible sum of their wages, and which defines the ring Zn over

which all arithmetic will be done.

• Alice picks an element r uniformly at random out of Zn. She then

adds her wage wA and sends xA = r + wA to Bob.

• Bob then adds his wage wB and sends xB = xA + wB to Charlie.

• Charlie and Dora act similarly to Bob, in sequence.

• Finally, Alice will receive xD = xC + wD from Dora. Alice can now

compute the sum of all wages by subtracting r from xD. Dividing the

sum by four will give the average wage.

The reason why no party can learn another parties’ input is that each party

receives exactly one message containing one value xi. The value of xi can
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be any element of Zn with the same probability. Thus it is impossible to

distinguish between an xi and a randomly generated value containing no

information about the (partial) sum.

However, if we allow some parties to collude, then they may readily

compute another parties input. For example, Bob and Dora could compute

Charlie’s input by subtracting xB from xC . For a secure sum protocol which

is secure against such colluding parties, see [135] and the citations therein.

As such, it is important to specify the context in which the security

holds. This context is called the security model. Within a security model, it

is specified what assumptions are made, plus how powerful an attacker may

be. Generally, protecting against powerful attackers is more expensive than

protecting agains weaker attackers, and thus there is a trade-off between

protection and performance.

Secure sum is a special purpose protocol, given that it only allows for

computing a sum. There are general purpose protocols which can compute

any functionality. They can be based on different cryptographic primitives,

such as secret sharing, oblivious transfer, homomorphic encryption or gar-

bled circuits. In this thesis we focus on the latter: namely homomorphic

encryption and garbled circuits, which are described in detail in Chapter 2.

1.3.1 SMC in the Network World

To date, the major use of applying privacy-preserving computation tech-

niques to problems in the network world has centred on the field of measure-

ments. Although each AS in the Internet has a variety of different measure-

ments of its network, the efforts of aggregating these may be hampered by the

fear of sharing such (potentially sensitive) information. In 2006, Roughan

and Zhang published various solutions in this regard, including secure sum-

mation of Internet traffic, distributed network problem detection [131] and

aggregation of performance measurements [130]. More recently, Burkhart

et al. [29] presented SEPIA, a ready-to-use library for privacy-preserving
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aggregation of network data. Ricciato and Burkhart [126] further improved

the efficiency of collaborative measurements by both relaxing the security

constraints for intermediate results, and by separating the computation into

an offline phase for pre-computations, plus an online phase.

Furthermore, Brickell and Shmatikov [26] demonstrated a solution for

the All-Pairs-Shortest-Distance and Single-Source-Shortest-Distance prob-

lem for two parties on their joint graph. This result might be used as a

building block for traffic engineering protocols. In contrast, Roughan and

Zhang used a different approach in their inter-domain traffic engineering pro-

tocol GATEway [132], by choosing a genetic algorithm to find the optimal

routing solution.

A special case of SMC is anonymisation. In an abstract way your iden-

tity can be an input to an algorithm as well. An illustrative example of

anonymisation in the network world is the ’Tor project’, presented in 2004

by Dingledine et al. [47]. It is a service distributed across several servers that

allows users to participate on the Internet without revealing their identity.

1.4 Thesis Roadmap

Beyond this introduction, this thesis is split into six chapters. Chapter

2 provides a background on secure multiparty computation, focusing on

homomorphic encryption and garbled circuits. (Please note that in each

following chapter we provide the background required for the specific issue

being addressed).

The first half of our research contribution focuses on the practicability

of SMC. In Chapter 3, we present a new implementation of Yao’s garbled

circuit based two-party secure function evaluation protocol. Specifically, we

present several optimisations that result in lower memory consumption and

significantly better performance compared to previous implementations.

In Chapter 4, we propose a secure scaling protocol that allows two par-
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ties to map their real number inputs into integers without revealing any

information about their respective inputs, as almost all techniques for SMC

support only integer inputs and operations. The main component is a novel

algorithm for privacy-preserving random number generation.

In Chapters 5 and 6 we apply SMC techniques to problems of network

management. We present a privacy-preserving routing protocol in Chapter

5 with the aim of protecting the privacy of the routing configuration. In

Chapter 6, we propose several protocols for detecting subscription fraud in

telecommunication networks. They are based on different SMC techniques,

and offer correspondingly different levels of privacy and performance. We

show feasibility and provide a comparison with implementations of our pro-

tocols.

We conclude the thesis in Chapter 7.

1.5 Statement of Research Contributions

The research contributions of this thesis have previously been published.

Each of the Chapters 3, 4, 5, and 6 map to one of the papers listed below.

I have been the principal author of all but the paper regarding faster secure

two-party computation, where both authors contributed equal parts.

1.5.1 Publications Arising From This Thesis

Components of this thesis have previously been published:

• Conversion of Real-Numbered Privacy-Preserving Problems into the

Integer Domain, Wilko Henecka, Nigel Bean, and Matthew Roughan.

In Proceedings of the 14th International Conference on Information

and Communications Security (ICICS), October 2012, Hong Kong,

LNCS 7618 pp.131–141.

• Faster Secure Two-Party Computation with Less Memory, Wilko He-
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necka and Thomas Schneider. In Proceedings of the 8th ACM SIGSAC

Symposium on Information, Computer and Communications Security

(ASIA CCS), May 2013, Hangzhou, pp. 437–446.

• STRIP: Privacy-Preserving Vector-Based Routing, Wilko Henecka and

Matthew Roughan, In Proceedings of the 21st IEEE International Con-

ference on Network Protocols (ICNP), October 2013, Göttigen.

• Privacy Preserving Fraud Detection Across Multiple Phone Record Data-

bases, Wilko Henecka and Matthew Roughan, Accepted on the 1st of

December 2014 to appear in IEEE Transactions on Dependable and

Secure Computing, DOI: 10.1109/TDSC.2014.2382573.



Chapter 2

Background

This chapter provides the background to the secure multiparty computation

techniques we use throughout this thesis. Additional background that is

specific to certain chapters is provided in the respective chapters.

2.1 Secure Multiparty Computation

Secure multiparty computation protocols are a set of techniques, often cryp-

tographic in nature, which enable parties to carry out distributed computa-

tion tasks without having to reveal their private data.

Perhaps the most famous problem in the area is called the Millionaire’s

Problem, where two millionaires meet on the street, and wish to determine

who is wealthier, but without revealing their own wealth. It was shown pre-

viously by Yao [144] that any polynomial time function can be computed

in a secure distributed manner, thus providing a simple solution to the Mil-

lionaire’s Problem.

That said, Yao’s approach [144] may not always be the most economical

choice, though there is now a substantial literature on secure multiparty

computation, and the closely related areas of privacy-preserving data mining

and private information retrieval.

A private information retrieval protocol allows a user to query an item

9
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from a database, held by another party, without revealing which item is

retrieved (see e.g. [34,59]). In contrast, privacy-preserving data mining pro-

tects the confidentiality of the items in a database whilst providing means

to extract “meaningful” information of aggregated items (see e.g. [4, 96]).

Both settings have in common that the information flow is asymmetric.

One or some parties hold private inputs, whilst other parties learn the output

of a particular function on these inputs. In this thesis, we are interested in

protocols where the confidential information is somewhat equally spread

amongst all cooperating parties.

The security of a secure multiparty computation protocol is defined by a

security model. The security model describes how powerful an adversary is:

that is, what he can and cannot do. Some parameters in defining a security

model include set-up assumptions, the communication channels, computa-

tional limitations, restricted adversarial behaviour, restricted notions of se-

curity, and upper bounds on the number of dishonest parties (see [64] for a

detailed explanation).

Intuitively, a more powerful adversary requires more sophisticated pro-

tection mechanisms, costing more resources. Choosing the right protocol for

a specific use-case therefore becomes a trade-off between security level and

efficiency.

In the last few decades SMC has come a long way from its first feasibility

results to actual implementations in the real world. The first deployment

of SMC was in Denmark in 2008, where it was used in a secure double

auction to determine the price of sugar beets [19]. In 2011, ITL, an Estonian

non-governmental non-profit organisation with the goal of promoting co-

operation between ICT companies, deployed an application for collecting

and reporting of financial indicators of the ICT sector [18].
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2.2 Homomorphic Encryption

An encryption scheme is called homomorphic if there exists an operation on

two ciphertexts that is equivalent to another operation on the corresponding

plaintexts: i.e.,

Enc(x)⊙ Enc(y) = Enc(x⊕ y),

for some operations ⊙ and ⊕, with Enc(x) denotes the encryption of x.

An encryption scheme consists of three algorithms (Gen, Enc, Dec) for

key generation, encryption, and decryption. There are two categories of

encryption schemes: secret-key (or symmetric) encryption and public-key

(or asymmetric) encryption. Whereas in symmetric encryption the same

key is used both for encryption and decryption, in asymmetric encryption

there are two different keys: specifically, the public key is published and used

for encrypting, while the private key is kept private and used for decrypting.

This approach eliminates the need for the parties to establish a shared secret

before exchanging encrypted messages. This key distinction between secret-

key and public-key encryption schemes is crucial for building protocols for

privacy-preserving co-operation.

In secret-key encryption every party that knows the key can decrypt. To

be able to add your own input to the protocol you need to know the key,

however, this would also enable you to decrypt the other parties inputs.

Therefore we will only consider homomorphic public-key encryption in

this thesis. (Please note that there are other scenarios where homomorphic

secret-key encryption can be used, for instance, private data processing in

the cloud [33, 134]).

We classify a scheme as additively homomorphic if the operation ⊕ cor-

responds to standard arithmetic addition, and multiplicatively homomorphic

if the operation ⊕ corresponds to standard arithmetic multiplication.

Examples of multiplicatively homomorphic encryption schemes are RSA

[127] and ElGamal [50].
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The first additively homomorphic encryption system was published by

Goldwasser and Micali in 1982 [65]. It allows for inputs with a size of

only 1 bit, and has a rather large expansion ratio - that is, a single bit of

plaintext is encrypted as an integer modulo n, with n being a product of two

large primes. However, it laid the basis for subsequent encryption systems.

Benaloh [35] proposed a generalisation that allows for longer blocks of data

to be encrypted at once. Naccache and Stern [106] improved upon Benaloh’s

scheme, as their system allows for bigger blocks of data coexistent with a

smaller expansion ratio. With a change of the base group, Okamoto and

Uchiyama [112] achieved an expansion ratio of 3. Paillier’s scheme [114] is

an improvement of the previous scheme. It has an expansion ratio of 2, yet

comparatively very efficient encryption and decryption functions. As such,

it is the most widely used additively homomorphic encryption system today.

As we make subsequent use of it in this thesis, it will be explained in more

detail in an upcoming section.

Damg̊ard and Jurik [44] proposed a generalisation of Paillier’s scheme. It

uses groups of the form Z
∗
ns+1 with Paillier’s scheme being the special case for

s = 1. The expansion ratio is 1 + 1/s. With increasing s the computational

complexity also increases. This means one can “buy” better communication

complexity for the cost of worse computation complexity. Since communi-

cation costs in our intended scenarios are not critical, we will use Paillier’s

homomorphic encryption scheme, as it offers the best computational com-

plexity.

The homomorphic property makes all such encryption schemes useful

tools for privacy-preserving computation, as they allow combinations of mes-

sages in the encrypted space, (i.e., the values of those messages are kept

private).

Notwithstanding, however, a homomorphic encryption scheme can only

be useful for privacy-preserving computation if it is semantically secure.
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2.2.1 Semantic Security

A public-key cryptosystem is considered semantically secure if it is infeasible

for a computationally-bounded adversary to derive information about the

plaintext -specifically if given only the corresponding ciphertext and the

public encryption key.

As semantic security is equivalent to indistinguishability against chosen

ciphertext attacks (IND-CPA) [141] we will give the definition for the latter.

Definition 1. IND-CPA is defined by the following game between an adver-

sary and a challenger:

1. The challenger generates a key pair and publishes the public key to the

adversary.

2. The adversary choses two plaintexts and sends them to the challenger.

3. The challenger selects one of the messages by flipping a fair coin, en-

crypts it with the public key, and sends the ciphertext to the adversary.

4. The adversary is free to perform additional polynomial time computa-

tions. Finally, it outputs a guess which of the two messages was chosen

by the challenger.

A cryptosystem is indistinguishable under a chosen plaintext attack if every

attacker, modelled by a probabilistic polynomial time Turing machine, wins

the game with only negligible advantage over random guessing.

It is easy to see that (textbook) RSA is not semantically secure, as its

encryption function is deterministic. That is, a plaintext will always be en-

crypted to the same ciphertext. The adversary can therefore always win the

game by encrypting the two messages himself and comparing the ciphertexts

to the challenge.

As such, real-world implementations of RSA use an additional padding

scheme (for example, OAEP [10]) to randomise encryption. However, with

the use of padding, RSA loses the homomorphic property.
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It is worth noting that all of the other homomorphic cryptosystems listed

above are semantically secure.

2.2.2 Paillier’s Encryption Scheme

Paillier’s encryption scheme [114] is the most widely used additively ho-

momorphic cryptosystem. It provides comparatively efficient algorithms for

encryption and decryption, and has a expansion ratio of 2 from the plaintext

to the ciphertext space. Its security is based on the Decisional Composite

Residuosity Assumption (see also definition in [114]), that is, given a com-

posite n and an integer z, there exists no polynomial time algorithm to

decide whether z is a n-th residue modulo n2 or not.

The scheme consists of three algorithms for key generation, encryption

and decryption, respectively.

Key generation Let k be the security parameter. Choose two k-bit

primes p and q uniformly at random and set n = pq. Large primes can

be generated efficiently by first generating random numbers of appropriate

size and then testing them for primality using efficient algorithms like Miller-

Rabin [87, page 394] (see also [3, Appendix A] for a detailed description).

Select a random g ∈ Z
∗
n2 and ensure that n divides the order of g by checking

gcd(L(gλ mod n2), n) = 1 with L(u) = u−1
n

and λ = lcm(p− 1, q − 1).

The public key is (n, g) and the private key is (λ).

Encryption To encrypt a message m < n, one chooses a random integer

r ∈ Z
∗
n and computes the ciphertext as

c = gmrn mod n2.

Decryption Let c ∈ Z
∗
n2 be the ciphertext to decrypt. The corresponding

plaintext message is computed as

m =
L(cλ mod n2)

L(gλ mod n2)
mod n.
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Properties

• Paillier’s scheme is additively homomorphic, because

Enc(m1) Enc(m2) = gm1rn1 · g
m2rn2 mod n2

= gm1+m2(r1r2)
n mod n2

= Enc(m1 +m2).

• Homomorphic multiplication with a constant k:

Enc(m)k = (gmrn)k mod n2

= gkm(rk)n mod n2

= Enc(km).

• Self-blinding - one can change the ciphertext without changing the

value of the original plaintext:

Enc(m) · gnx = gmrn · gnx mod n2

= gm+nxrn mod n2

= Enc(m),

as m+ nx = m mod n.

• Paillier’s scheme is semantically secure. Intuitively, the random com-

ponent rn of an encryption ensures that it is very unlikely to encrypt a

plaintext to the same ciphertext. Consequently, this makes it impossi-

ble to distinguish between two ciphertexts. See [114, Theorem 15] for

a formal proof.

Efficiency Considerations

• Damg̊ard and Jurik [44] proposed to choose g = (1+n). This leads to

a simplified encryption function:

c = (1 + n)mrn mod n2

= (1 + nm)rn mod n2.
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The determing factor for the computational complexity of an encryp-

tion is the number of exponentiations. By choosing g = 1 + n we

can replace one expensive exponentiation with a cheap multiplication,

almost halving the computational complexity.

• As Paillier [114] pointed out, the decryption function can be computed

more efficiently by applying the Chinese Remainder Theorem (CRT)

[46]. Let

Lp(u) =
u− 1

p
and Lq(u) =

u− 1

q
.

Decryption can then be made faster by first computing the message

mod p and mod q and then combining the two using the CRT‘:

mp =
Lp(c

p−1 mod p2)

Lp(gp−1 mod p2)
mod p

mq =
Lq(c

q−1 mod q2)

Lq(gq−1 mod q2)
mod q

m = CRT(mp, mq) mod pq

We now have to perform more than twice the number of computations,

yet the moduli in these computations have only half the bit size of n,

which leads to a factor of 4 efficiency improvement.

• The denominator in the decryption function is always the same for a

given private key (it depends only on g, p and q), therefore, one can

precompute the denominator in the key generation phase and store the

result in the private key.

2.2.3 Fully Homomorphic Encryption

Fully homomorphic encryption systems allow for both addition and multi-

plication under encryption.

The almost fully homomorphic schemes of Boneh et al. [22] and Gentry

et al. [63] allow for a polynomial number of additions and one multiplication.
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The first fully homomorphic encryption schemes were proposed by Gen-

try in 2009 [60, 61]. However, the computational complexity and ciphertext

sizes for reasonable security levels are impractical.

Although significant efforts from the research community over the past

few years have been invested into improving Gentry’s ideas, the practicality

of fully homomorphic encryption has remained significantly limited.

For example, Gentry et al. [62] showed an implementation of an evalu-

ation of the AES circuit. It needed several hours to compute one AES en-

cryption, compared with just milliseconds for the garbled-circuit approach

(discussed in Section 3.5).

Intuitively, it seems unlikely that fully homomorphic encryption will

reach the efficiency of current public-key cryptosystems. For instance, they

require the addition of extra algebraic structure to allow for the homomor-

phic operations. But as these structures weaken security, additional coun-

termeasures, with extra costs, are necessary.

Still, homomorphic encryption schemes, especially the simple additive

ones, can be put to good use.

2.3 Garbled Circuits

Another method for efficient privacy-preserving computation is based on

Garbled Circuits (GC). The idea of GC is rooted in Yao’s work regarding

secure function evaluation (SFE) [143,144]. The key concept is to represent

the function f to be evaluated as a circuit. GC techniques provide means to

enable one party, given the inputs in encrypted form, to evaluate the circuit

without learning any meaningful information about the intermediate values.

2.3.1 Function Representation as a Circuit

A circuit is a directed acyclic graph. Nodes have k inputs and one output

and represent either an atomic operation or an input to the circuit. Edges
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connect the output of one node to inputs of other nodes and pass interme-

diate values from one node to the others.

Choosing an appropriate set of atomic operations, every function can be

expressed as a circuit. As a node can only compute the value of its output

once all inputs are available, sorting the nodes in a topological order ensures

a seamless sequential evaluation of the circuit.

There are three types of circuits used for SFE:

!
"

!
#

"
"

!
$

!

!

(a) Arithmetic circuit

for z1 = (x1 + x2)x3
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(b) Boolean circuit for

z1 = (x1 ∧ x2) ∨ x3
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(c) OBDD for x1 ∨ (x2 ∧

x3)

Figure 2.3.1: Function representations as circuits

Arithmetic Circuits An arithmetic circuit (e.g. Figure 2.3.1a) is defined

over a ring R, e.g., Zp. The atomic operations are + and ×, denoting addi-

tion and multiplication in R. All values passed through edges are elements

in R.

Boolean Circuits Let F be the set of atomic Boolean functions allow-

able in the circuit model. A Boolean circuit over set F with n inputs and

m outputs is then defined as a finite directed acyclic graph. Each node cor-

responds to either a basis function or an input and has d inputs and one

output. Edges connect outputs of one node to inputs of other nodes.
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A typical set of atomic functions in the context of privacy-preserving

computing contains the AND, OR, NOT and XOR functions.

Again, the nodes can be sorted in a topological order, such that the i-th

node has no inputs that are outputs of a successive node.

Although every function can be expressed as a Boolean circuit with an

adequate set of atomic functions, finding the representation with the least

amount of nodes is “very hard” [84] (it is unlikely to be solvable in polyno-

mial time).

Boolean circuits can be generated automatically from a higher-level spec-

ification of the function. The Fairplay compiler [101] uses the Secure Func-

tion Description Language (SFDL) as the input language to describe the

function. It supports variables, functions, Boolean (∧,∨,⊕, . . . ), arithmetic

(+,−,×, . . . ) and comparison (<,>,=, . . . ) operators and some control

structures. The compiler automatically transforms a function described in

SFDL into a corresponding Boolean circuit.

TASTY [71], the Tool for Automating Secure Two-partY computations,

provides the input language TASTYL, a subset of the Python language, to

describe the function. It not only allows for generation of garbled circuits

but also for secure computation using homomorphic encryption.

Another circuit generator was proposed by Huang et al. [78]. Using

an object-oriented representation for the function, they provide higher-level

objects, which describe operators such as addition of 2 l-bit values. It is

designed to be easily extensible to implement any operation. However, this

representation does not directly support control structures.

Ordered Binary Decision Diagrams (OBDD) [27] Another way of

representing a Boolean function is an ordered binary decision diagram. A

binary decision diagram (BDD) can represent any Boolean function of the

form f : Bk → B, where B = {0, 1}, as a rooted, directed acyclic graph;

this consists of both decision nodes and two terminal nodes (called the 0-
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terminal and the 1-terminal). Each decision node i is labeled by Boolean

input variable xi and has two child nodes, named the low and high child.

The edge from a node to a low (high) child represents an assignment of the

variable to 0 (1). A BDD is called ordered if the variables appear in the

same order on all paths from the root to the terminals.

This technique can be extended to describe Boolean functions with out-

puts bigger than one bit, i.e., f : Bk → Bl, by using multiple OBDDs, where

the i-th OBDD computes the i-th output bit.

The size of the OBDD is determined both by the function being repre-

sented and the chosen ordering of the variables. The problem of finding the

variable ordering which leads to the smallest circuit is NP-hard [20].

2.3.2 Secure Function Evaluation of Circuits

A secure function evaluation (SFE) protocol has to provide means which

allow the participating parties to evaluate a circuit in such a way that no

party can learn the other parties’ input, nor any intermediate value of the

circuit computation, as they might reveal information about the inputs.

Arithmetic Circuits As the two atomic operations in an arithmetic cir-

cuit are + and × the obvious cryptographic tool of choice is fully homomor-

phic encryption. A two-party SFE protocol is then very simple:

• The client encrypts his inputs and sends these encrypted values, to-

gether with the corresponding public key, to the server.

• The server computes the function as described in the arithmetic circuit

by using the fully homomorphic property of the cryptosystem, and

returns the result to the client, who then decrypts it.

It is easy to see that neither party can learn anything about the other party’s

input, as long as the security of the cryptosystem holds.
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However, as fully homomorphic encryption is still far from practical,

other strategies to evaluate arithmetic circuits [89] are more efficient.

2.3.3 Garbled Circuits: SFE of Boolean Circuits and

OBDD’s

In this thesis we focus on SFE of Boolean circuits, as research on this tech-

nique is more advanced. SFE of OBDD’s can either be performed analo-

gously to SFE of Boolean Circuits (see e.g., [92]), or via use of a protocol

based on homomorphic encryption, with better communication efficiency yet

higher computation costs [80].

The essence of garbled circuits is to represent the function f as a Boolean

circuit, and to subsequently associate two (random) tokens to each edge of

the circuit; notably the tokens have the hidden semantics of 0 and 1 (the

true value of the edge is garbled). By providing means to propagate these

tokens across the nodes whilst maintaining the hidden semantics, one can

create a two-party protocol, where one party (the constructor) creates the

garbled circuit, and the other party (the evaluator) can evaluate the circuit.

As the tokens do not reveal their corresponding plain value, and all interme-

diate values in the evaluation process are also tokens maintaining the hidden

semantics, the evaluator can not gain any useful information. However, it

is important that the evaluator only learns the tokens corresponding to his

inputs. If he also knew the tokens for his negated inputs, he could infer

the constructor’s inputs. As we also require that the constructor does not

learn the evaluator’s inputs, the tokens corresponding to his inputs have to

be transferred in an oblivious way (see Section 2.3.5). The schematic of the

protocol is shown in Figure 2.3.2.

Creating and Evaluating a Garbled Circuit Evaluating a garbled

circuit is very similar to evaluating a circuit with the help of truth tables.

Figure 2.3.3 shows an AND node and Table 2.3.1 shows the corresponding
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constructor evaluator

creates tokens and the

garbled circuit C̃ C̃

receives C̃

I
c Ieprovides input Ic provides input IeOblivious

Transfer
Ĩ

obtains inputs Ĩ

evaluates C̃ with inputs Ĩ

to obtain outputs Õ

Õdecrypts Õ to obtain

result

Figure 2.3.2: Schematic of the two party SFE protocol

truth table. A truth table lists the output of the gate for all possible input

configurations. Let the inputs of this node be e1 = 0 and e2 = 1. Then the

third row of the truth table tells us that the output for this particular input

configuration is 0.

!"#

!
"

!
#

!
$

Figure 2.3.3: Node with two inputs

e1 and e2, which outputs e3 = e1∧e2.

input e1 input e2 output e3

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.3.1: Truth table for AND

node in Figure 2.3.3

Creating a garbled circuit: The first step in generating a garbled circuit

is to replace the plain values in the truth table with random tokens. Let

t0ei ∈ {0, 1}
k be a randomly generated bit string of length k with k being the

security parameter. It is used as a token for edge ei representing the plain
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value 0 and t1ei is the token representing 1, respectively. Table 2.3.2 shows

the garbled truth table for the AND node.

input e1 input e2 output e3

t0e1 t0e2 t0e3

t0e1 t1e2 t0e3

t1e1 t0e2 t0e3

t1e1 t1e2 t1e3

Table 2.3.2: Garbled truth table for AND node in Figure 2.3.3

Obviously, this kind of obfuscation is not enough to hide the plain value

of the output edge, since the value that appears three times in the output

column of the garbled truth table must be the one representing 0.

In the next step of generating a garbled circuit the constructor encrypts

the tokens for the output in the truth table using the tokens of the corre-

sponding inputs as the encryption keys. Table 2.3.3 shows the encrypted

outputs, with Enctaej (t
b
ei
) meaning that the token tbei is encrypted with the

secret key taej .

input e1 input e2 output e3 encrypted output

t0e1 t0e2 t0e3 Enct0e1 (Enct
0
e2
(t0e3))

t0e1 t1e2 t0e3 Enct0e1 (Enct
1
e2
(t0e3))

t1e1 t0e2 t0e3 Enct1e1 (Enct
0
e2
(t0e3))

t1e1 t1e2 t1e3 Enct1e1 (Enct
1
e2
(t1e3))

Table 2.3.3: Garbled truth table with encrypted outputs for AND node in

Figure 2.3.3

The important observation is that the evaluator, given the encrypted

outputs and the tokens of one input configuration, can only decrypt the

corresponding output token (and nothing else). Thus, he will only learn one
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input configuration for the subsequent nodes in the circuit, and eventually

one circuit output configuration.

That said, there is still one issue that may allow the evaluator to infer the

plain value of the decrypted output token. Specifically, knowing the truth

table for the node and the position of the entry of the encrypted output

tokens, the evaluator can infer the corresponding plain value, e.g., if the

evaluator can decrypt the third entry of the encrypted table in Table 2.3.3,

then the plain value of the output must be 0 as the third entry of the truth

table for an AND node is 0 (see Table 2.3.1).

In the final step of generating a garbled circuit, the constructor randomly

permutes the encrypted output tokens. Table 2.3.4 shows an example per-

mutation for our AND node.

input e1 input e2 output e3 encrypted output permuted output

t0e1 t0e2 t0e3 Enct0e1 (Enct
0
e2
(t0e3)) Enct0e1 (Enct

1
e2
(t0e3))

t0e1 t1e2 t0e3 Enct0e1 (Enct
1
e2
(t0e3)) Enct1e1 (Enct

1
e2
(t1e3))

t1e1 t0e2 t0e3 Enct1e1 (Enct
0
e2
(t0e3)) Enct0e1 (Enct

0
e2
(t0e3))

t1e1 t1e2 t1e3 Enct1e1 (Enct
1
e2
(t1e3)) Enct0e1 (Enct

1
e2
(t0e3))

Table 2.3.4: Garbled truth table with encrypted and permuted outputs for

AND node in Figure 2.3.3

The garbled circuit consists of the permuted encrypted output tables of

all nodes in the circuit. Algorithm 1 shows the pseudocode for generating a

garbled circuit.

Evaluating a garbled circuit: The evaluator needs to know the garbled

circuit C̃, the Boolean circuit C and the tokens corresponding to both parties

inputs, which are the garbled inputs Ĩ, to be able to evaluate the circuit. As

the nodes in the circuit are ordered topologically, such that the i-th node

has no inputs that are an output of a successive node, the evaluator can

iterate over all nodes and decrypt one entry of the garbled table, which
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Algorithm 1 Algorithm performed by the constructor to create a garbled

circuit
Input: Boolean circuit C

Output: Garbled circuit C̃

for all edge ei in C do

create random token t0ei and t1ei

end for

for all node ni in C do

tti ← encrypt and permute the column for the output tokens of the

truth table of node ni

C̃[i]← tti

end for

subsequently becomes the input token of successive nodes. Algorithm 2

shows the pseudocode for evaluating a garbled circuit.

The question might arise as to how the evaluator may identify the entry in

the garbled table which decrypted correctly. One possible solution is to use

a special private-key encryption as described in [98, Section 3.1]. The idea

is to concatenate the token with additional information before encryption.

After decryption, this additional information is only present if the correct

keys were used, otherwise, it will decrypt to some random value.

However, there is a more efficient way. The previously mentioned ap-

proach requires on average 2 1/2 decryptions to find the right entry. The

Point-and-Permute technique (see Section 2.3.4) allows the evaluator to

identify the correct entry straight away by adding random permutation bits

to the encrypted values in the garbled table.

2.3.4 Efficiency Considerations

This technique introduces a significant amount of complexity. Every plain

text bit is expanded by a factor of the order of the security parameter; addi-
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Algorithm 2 Algorithm performed by the evaluator to evaluate a garbled

circuit

Input: Garbled circuit C̃, Boolean circuit C, garbled inputs Ĩ

Output: Garbled outputs Õ

for all node ni in C do

ti ← decrypt C̃[i] with node ni’s input tokens

if output of ni is output of C then

Õ.add(ti)

end if

save ti as input for subsequent nodes

end for

tionally, every primitive bit operation is replaced by several comparatively

expensive encryptions. Over the last few years several techniques have been

proposed to reduce the complexity of garbled circuits.

Encryption Function The dominating factor of the computation costs

for the constructor is the encryptions for generating the garbled tables and

the decryptions for the evaluator respectively. Therefore, choosing an ap-

propriate encryption function is pivotal for good performance.

Pinkas et al. [119] showed that, using the encryption scheme:

Encte1 ,te2 ,s(te3) = te3 ⊕KDF(te1 , te2, s),

with s being a nonce, (an arbitrary number used only once in the protocol),

and KDF being a key derivation function1. One can realise the KDF using

correlation robust hash functions. In their implementation Pinkas et al.

used one SHA-256 invocation per KDF.

1A key derivation function derives one or more secret keys from a secret value such

as a master key. In this case, if two nodes in the circuit have the same inputs, then the

tokens used as keys for encryption will be the same, as well. The KDF will then derive

from those tokens and a nonce a unique encryption key.
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Modern CPU now support the AES-NI [128] instruction set, which offers

hardware acceleration for computing AES encryption. Kreuter et al. [91]

achieved a circuit computation time reduction of at least 20 % by using

AES rather than the SHA-256 hash function.

Point-and-Permute It takes the evaluator on average 21
2
attempts to find

the entry in the garbled truth table that decrypts correctly with his input

tokens. Malkhi et al. [101] proposed a technique called Point-and-Permute

to enable the evaluator to directly identify the right entry, with no extra

costs.

The idea is that, during construction of the garbled circuit, the construc-

tor assigns a random permutation bit to each token such that the two tokens

for each edge have opposing permutation bits. He then uses the permuta-

tion bits of the tokens of the input edges to permute the garbled table. As

the permutation bits are chosen at random, the permutation of the garbled

table is thus random as well.

Garbled Row Reduction This technique reduces the size of the garbled

table that has to be transferred, thereby reducing the communication com-

plexity. It was first presented in [109]. The observation is that, instead of

choosing both tokens for the output edge at random, we can choose one token

to be a function of one configuration of the tokens of the inputs. Therefore

one entry of the garbled table does not have to be transmitted, leading to a

reduction in communication costs of 25%.

Free XOR In [90] Kolesnikov et al. showed a construction that enables the

evaluation of XOR nodes for free. Instead of choosing all tokens at random,

the two tokens of an edge have a specific relationship. The construction is

as follows: choose t0e1 , t
0
e2

and R at random. Then set t0e3 = t0e1 ⊕ t0e2, and

∀i : t1ei = t0ei ⊕ R, with ⊕ denoting the XOR operation.
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Now

t0e3 = t0e1 ⊕ t0e2 = (t0e1 ⊕ R)⊕ (t0e2 ⊕R) = t1e1 ⊕ t1e2 ,

and

t1e3 = t0e1 ⊕ (t0e2 ⊕ R) = t0e1 ⊕ t1e2 = (t0e1 ⊕ R)⊕ t0e2 = t1e1 ⊕ t0e2 .

Therefore the evaluator can compute the token of edge e3 without the need

of a garbled table, and with negligible computation costs.

The same technique can also be applied to XNOR nodes.

Reducing the number of non-XOR and non-XNOR nodes in a circuit

leads to a decrease in computation and communication costs. In [145] Yu

et al. and in [119] Pinkas et al. showed optimisation techniques to eliminate

NOT and constant input gates from Boolean circuits. Techniques to min-

imise circuits with free XOR and efficient circuit constructions of frequently

used circuit building blocks are shown in [133].

Pre-Computation vs. Pipelining The classical approach to run a SFE

protocol is that, firstly, the constructor creates the garbled circuit, secondly,

he then sends it to the evaluator, and finally, the evaluator starts to evaluate

the circuit.

Huang et al. [78] proposed another approach, where construction and

evaluation of the circuit is interwoven. Their main observation was that,

once the constructor has finished computing the garbled table of a node, the

evaluator may immediately start evaluating that node, as the circuit is in a

topological order. That is, no node depends on the outputs of subsequent

nodes. The advantage of this technique is that the constructor does not need

to store the whole garbled circuit in memory; in addition, the overall running

time (measured from the beginning of garbeling to the end of evaluating) is

shortened.

However, if the intended use-case requires a short online phase, i.e., the

time from providing the inputs until obtaining the outputs, the classical

approach performs better, as the garbled circuit can be precomputed.
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2.3.5 Oblivious Transfer

So far we have not tackled the problem of how the evaluator learns the

tokens corresponding to his inputs - specifically under the dual constraints

that the constructor does not learn his inputs, and that the evaluator does

not learn the tokens corresponding to his negated inputs.

The tool of choice for this problem is called an Oblivious Transfer (OT)

protocol. The idea of OT goes back to Rabin [122]. He proposed a protocol

where a sender sends a message to the receiver with probability 1/2, while

the sender remains oblivious as to whether the receiver received the message

or not.

A slightly different OT protocol is needed for our problem. Even et al.

[52] transformed Rabin’s idea into a 1-out-of-2 OT protocol. Here the sender

has two secrets, whilst the receiver only learns one secret. The protocol

ensures that the sender stays oblivious to which secret was chosen by the

receiver; Notably, these are exactly the properties we need to transfer the

tokens (corresponding with the evaluators inputs) from the constructor to

the evaluator.

More efficient 1-out-of-2 OT protocols were proposed by Naor and Pinkas

[108] and Aiello et al. [5]. However, as these protocols rely on asymmetric

cryptography, they are still comparatively expensive and can significantly

slow down garbled circuit based protocols with large inputs.

Extending OT Efficiently

Ishai et al. [79] showed how to reduce any n 1-out-of-2 OTs of l-bit strings

to k 1-out-of-2 OTs of k-bit strings plus a small additional overhead, with

security parameter k.

Additionally, as the k 1-out-of-2 OTs are independent of the sender’s

secrets and the receiver’s choices, those OTs can be run in a precomputation

phase further reducing the running time of the online phase.
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2.3.6 Two-party Secure Function Evaluation (SFE) Pro-

tocols

In this thesis we focus on SFE protocols for two parties. That is, we have

one constructor creating the garbled circuit, and one evaluator evaluating

it.

However, SFE using garbled circuits is not limited to the two-party case.

There are protocols that allow for more than two parties, e.g. [109].

The protocol for the two-party case, schematically depicted in Figure

2.3.2, runs as follows:

• The constructor generates a garbled circuit representation C̃ of the

function f as described in Section 2.3.3 and sends C̃ to the evaluator.

• The constructor sends the tokens corresponding to his inputs to the

evaluator in the clear. The tokens corresponding to the evaluators’

inputs are transmitted using an oblivious transfer protocol.

• Now, the evaluator can evaluate the garbled circuit C̃ using the garbled

inputs. He obtains the garbled outputs.

• Finally, the garbled outputs are converted into the plain outputs for the

respective party. The constructor learns his outputs by receiving the

respective garbled outputs from the evaluator (in fact, it is sufficient

to just send the permutation bits). As he created these garbled values,

he is able to interpret them correctly. For the evaluator to be able

to learn his outputs, the constructor has to send helper information;

for instance, he can send a mapping from permutation bits of the

evaluator’s garbled outputs to the corresponding plain values.

Semi-Honest Adversaries

Yao’s protocol, as described in Section 2.3.6, is secure against semi-honest

adversaries [98]. A semi-honest adversary follows the protocol specification
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correctly but attempts to learn additional information by analysing the tran-

script of messages received during the protocol execution.

The security of the protocol is computationally bounded. That is, given

unlimited computation power, the evaluator could break the garbled circuit.

However, by choosing the security parameters appropriately, one can assure

that a realistic attack is infeasible.

Covert or Malicious Adversaries

The trust assumption for semi-honest parties might not be true for an in-

tended use-case. Yao’s protocol can be extended to protect against more

powerful adversaries. There are extensions to protect against both covert

adveraries [6, 66] and against malicious adversaries [91, 97]. Whereas both

types of adversaries are allowed to deviate from the protocol as they wish,

the covert adversary also does not want to be caught doing so (or the honest

party must have a good chance of detecting the covert adversary cheating).

Introducing additional security measures to account for more powerful

adversaries comes with extra costs. As the appropriate choice of protection

against adversaries depends on the specific use case, we will assume the

semi-honest case throughout the thesis for garbled circuit based protocols.

However, we want to point out that our solutions are not limited to the

semi-honest case. By using one of the aforementioned protocols, one can

protect against more powerful adversaries.

In the next chapter we present a new implementation of the two-party SFE

protocol. By focussing on memory consumption, we are able to significantly

improve the performance compared with previous implementations.



32 CHAPTER 2. BACKGROUND



Chapter 3

Memory Efficient Secure

Two-Party Computation

In this chapter we present a new implementation of Yao’s garbled circuit

two-party SFE protocol, augmented by several optimisations; these result in

lower memory consumption and significantly better performance compared

with previous frameworks.

More specifically, we improve the memory footprint of Yao’s SFE protocol

by reducing the memory consumption of the oblivious transfer extension

protocol (Section 3.3.1), we improve the maximum working set technique

(Section 3.3.2) and we divide the circuit into sub-circuits (Section 3.3.3).

As described in Section 3.1 and summarised in Table 3.1.1, most previous

frameworks have a memory consumption which is linear in the size of the

evaluated circuit.

We also provide an implementation with performance improvements for

base oblivious transfers using multi-threading (Section 3.4.1), and for gar-

bling the circuit using a cache for both circuit descriptions and the commu-

nication (Section 3.4.2).

As shown in [83] and implemented in the framework of [91], it is sufficient

to just hold the intermediate values in memory that are needed later on,

called the working set. For example, the maximum size of the working

33
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set of a Karatsuba multiplication of two 128 bit values is 1,074 whereas

the circuit has 57,000 gates. In VMCrypt [100], the required memory is

dependent upon the way a programmer both creates and decorates circuit

components; furthermore the framework of [91] requires additional overhead

in the online phase to manage a usage counter and free unused memory (see

Section 3.3.2 for details). The memory consumption of our engine has no

additional overhead in the online phase.

In this regard, by combining the maximum working set technique with

the division of a circuit into several repeatedly executed sub-circuits of [78],

we achieve a significantly smaller memory footprint for the protocol execu-

tion than either technique on its own.

In Section 3.6 we demonstrate that our implementation is substantially

more efficient than previous frameworks. As applications, we consider secure

evaluation of the Hamming distance, fast multiplication, and computing the

minimum. Moreover, we give performance results on both securely comput-

ing the AES block cipher, and (for the first time) results on secure evaluation

of the ultra-lightweight block cipher PRESENT.

As many previous frameworks do, we provide the source code of our

implementation as open source software, to both foster future works and

enable a fair performance comparison. The code is available for download

at https://github.com/encryptogroup/me-sfe.

This chapter represents joint work with Thomas Schneider from the Eu-

ropean Center for Security and Privacy by Design (EC SPRIDE), Technische

Universität Darmstadt.

3.1 Introduction

Secure two-party computation, often called secure function evaluation (SFE),

allows two mutually mistrusting parties to compute an arbitrary function on

their private inputs, without revealing any information about their inputs

https://github.com/encryptogroup/me-sfe
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beyond the function’s output. Although the real-world deployment of SFE

was believed to be very expensive for a relatively long time, the cost of

SFE has been dramatically reduced in the recent years – thanks to many

algorithmic improvements and automatic tools, as well as faster computing

platforms and communication networks.

SFE enables a large variety of privacy-preserving applications; to name

but a few, these include electronic auctions [109], data mining [95], or bio-

metric identification [17, 77].

Although other approaches exist, most practical applications of SFE,

(including the ones listed above), are based on Yao’s garbled circuits tech-

nique [144], for which many improvements have been proposed (we give a

summary in 3.2.1). In this chapter we focus on secure two-party compu-

tation based on garbled circuits in the semi-honest adversary model. In

this model, the adversary is assumed to be “honest-but-curious”, i.e., he

honestly follows the protocol specification, but tries to learn additional in-

formation from the messages seen. Although this adversary model is very

weak, it allows the construction of highly efficient protocols for many ap-

plication scenarios, e.g., for constructing privacy-preserving protocols that

protect against attacks by insiders or future break-ins.

We strongly believe that pushing the performance limits of such protocols

is essential in order to make secure computation a practical alternative.

Many application scenarios require a low memory footprint, e.g., privacy-

preserving applications on smartphones [75, 76]; generating garbled circuits

in resource-restricted trusted hardware [82]; evaluating garbled circuits with

a hardware accelerator [83]; or securely evaluating large functionalities in

cloud computing scenarios [28]. Our framework has a smaller memory foot-

print than any previously published framework and, combined with its excel-

lent performance, represents the best candidate to enable such applications.

Frameworks for secure two-party computation in the semi-honest ad-

versaries setting can be classified into either the traditional compilation
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paradigm, (where the function to be computed is first compiled), or the

’on-the-fly’ paradigm (that generates circuits gate by gate from a library).

The compilation paradigm is used in Fairplay [11, 101] and TASTY [71].

The ’on-the-fly’ paradigm is used in the FastGC framework [77] and VM-

Crypt [100]. We provide the best of both worlds by compiling and optimising

sub-circuits once and dynamically composing these sub-circuits on-the-fly.

3.1.1 Related Work

Several frameworks for SFE with different properties have been proposed to

achieve performance improvements (as summarised in Table 3.1.1). These

frameworks allow an application developer to describe the functionality re-

quired for secure computation at a high level, abstracted from the details

of the underlying protocol. Fairplay [11, 101] allows the functionality to be

computed to be described in a high-level language which is compiled into

a Boolean circuit in an offline pre-computation phase. This compilation

allows global optimisations, such as eliminating dead code. Subsequently,

TASTY [71] partitioned the garbled circuit protocol such that most of the

expensive operations (w.r.t. both, communication and computation) are

performed in the pre-computation phase. VMCrypt [100] introduced the

concept of streaming, i.e., the garbled circuit is generated gate by gate, and

directly streamed into the network, to enable smaller memory footprints.

Previously the whole garbled circuit was created and held in memory before

it was sent to the other party. VMCrypt achieves a smaller memory footprint

by allowing the composition of the circuit by dynamically constructing and

deconstructing sub-circuits. However, VMCrypt instantiates a new object

for each gate, and so its performance suffers from the additional overhead

of garbage collection. Similarly, in FastGC [78] the circuit is not compiled,

but composed from sub-circuits, and dynamically generated within a library.

Furthermore, a new object is created for each gate of the sub-circuit, which

could be freed by the garbage collector when no longer used. GCParser [103]
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Framework
Compilation Memory Footprint GC/

or Streaming UC

Fairplay [11, 101] C O(circuit size) none

TASTY [71] C O(circuit size) none

VMCrypt [100] S O(max(size of sub-circuit)) GC

FastGC [78] S O(max(size of sub-circuit)) GC

GCParser [103] both O(max(size of sub-circuit)) GC

[91] (cluster) both O(mws(circuit)) UC

This Work both O(max(mws(sub-circuit))) none

Table 3.1.1: Frameworks for secure two-party computation in the semi-

honest adversaries setting. GC: garbage collection, UC: usage counter,

mws(x): maximum working set of x.

extended the FastGC framework to read in a file which describes the way

pre-defined sub-circuits should be put together; it also requires memory lin-

ear in the size of the sub-circuits. Most recently, the framework of [91]

implemented GC-based secure function evaluation in the malicious setting,

by exploiting the high degree of parallelism available in a cluster. In this

framework, each gate carries a usage counter, such that memory can be freed

after the last use of the gate; however, this requires additional overhead in

the online phase. Nonetheless, the maximum working set, (the outgoing wire

labels of the gates, that are either an output to the circuit or an input to

subsequent gates), is smaller – and, in most cases, significantly smaller than

the circuit. We extend their ideas for memory-efficient secure evaluation of

garbled circuits by modifying the maximum working set idea to eliminate

the usage counter and applying it to sub-circuit optimisation.

Furthermore, a compilation technique for memory-efficient on-the-fly

generation of circuits from Fairplay’s high-level description language was

proposed in [104]. Alternatively, circuits can also be compiled from ANSI
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C programs, as shown in [74]. The FastGC framework [78] was recently ex-

tended to process circuit descriptions, which are composed from hard-coded

circuit building blocks [103].

However, these techniques do not minimise the amount of memory needed

during secure evaluation of the circuit.

3.2 Preliminaries

3.2.1 Yao’s Garbled Circuit Protocol

Yao’s garbled circuit protocol [144] allows two parties, namely a server (con-

structor) and a client (evaluator), to jointly compute a function f repre-

sented as Boolean circuit on their respective private inputs x and y. At a

very high level, the constructor creates an encrypted (garbled) version of

f which is then sent to the evaluator, who evaluates the function under

encryption. The server also has to send encrypted versions of the private

inputs to the evaluator. For the evaluator’s inputs this is done with a sub-

protocol, called oblivious transfer, such that the constructor does not learn

the evaluator’s inputs (see below for details).

We provide a more detailed description of Yao’s protocol in Section 2.3.3.

The following optimisations of garbled circuits and oblivious transfer are

used in today’s most efficient implementations of Yao’s protocol, including

[17, 71, 78, 91, 100] and our implementation.

Garbled Circuit Optimisations

The point-and-permute technique [109] represents each wire label as a sym-

metric t-bit key and a permutation bit π, where t is a symmetric security pa-

rameter. The permutation bits of a gate’s input wires are used as an index to

denote which table entry needs to be decrypted. The free XOR technique [90]

allows computation of garbled XOR and XNOR gates without communica-
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tion (no garbled table is needed), and only negligible computation. Thus,

the dominating factor for the complexity of a circuit is the number of non-

XOR gates. Further, the garbled row-reduction technique [109, 119] allows

reduction of the size of the garbled table by one entry.

We described these optimisation techniques in more detail in Section 2.3.4.

Oblivious Transfer

In m-parallel Oblivious Transfer (OT) of ℓ-bit strings, denoted as OTm
ℓ , the

chooser inputs a vector of choice bits ri, with i = 1, . . . , m and the sender

inputs a vector of pairs of ℓ-bit strings (x0, x1)i, i = 1, . . . , m. At the end

of the protocol, the chooser learns the selected strings xri,i, but nothing

about the other strings x1−ri,i whereas the sender learns nothing about the

choices ri.

When using OT to transfer the input labels in Yao’s Garbled Circuit

protocol, ℓ = t+1 (t is the protocol-wide symmetric security parameter, and

+1 because of the extra permutation bit needed for the point-and-permute

optimisation technique), whereas m corresponds to the number of input bits

provided by the evaluator which can be large. Using OT extensions of [79]

it is possible to reduce a large number of OTs to a small number of only

k OTs, where k is a security parameter. These remaining k base OTs are

implemented with an efficient OT protocol which requires O(k) public-key

operations. Naor et al. [108] provide such an OT protocol.

In Section 3.4.1 we give implementation improvements for the base OTs

of [108] and in Section 3.3.1 we show how the OT extension of [79] can be

implemented with a small memory footprint.
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3.3 Secure Evaluation of Garbled Circuits with

Less Memory

3.3.1 Extending OTs with Low Memory Footprint

A large number of m parallel OTs of ℓ-bit strings, OTm
ℓ can be reduced to a

small number of only k ≪ m OTs of k-bit strings, OTk
k, using OT extensions

of [79] as implemented in [78]. The original protocol of [79] needs only two

messages beyond the messages of the base OTs, but memory linear in m.

We reduce the memory requirement of this protocol by re-ordering its

messages in the following ways.

To begin, the OT extension construction of [79] proceeds in two steps.

Firstly, the large number of m parallel OTs of short ℓ-bit strings are reduced

to k parallel OTs of long m-bit strings, cf. [79, Fig. 1]. These OTs are

implemented using k parallel OTs of short k-bit keys that are then stretched

into longer m-bit masks using a pseudo-random generator (PRG), cf. [79,

Fig. 3].

A pseudo-random generator (PRG) maps a random seed to a longer

pseudo-random string, i.e. PRG(k) : {0, 1}k 7→ {0, 1}∗. A very efficient

and standard way to implement a PRG is to successively concatenate the

output of a pseudo-random permutation (PRP) keyed with a counter, i.e.,

PRG(k) = PRPk(0)||PRPk(1)|| . . . . In practice, the PRP can be instanti-

ated with a block cipher which operates on blocks of M bits, e.g., in our

implementation we use AES-128 with M = 128. Now, in order to reduce the

memory footprint, the OT extension construction of [79] can be easily split

into smaller blocks, where each block performs M parallel OTs. The over-

all protocol is shown in Figure 3.3.1. To simplify presentation, we assume

w.l.o.g. that m is a multiple of the block size, m = BM (otherwise, the last

messages are shorter), and that logB ≤M . T denotes an M×k bit matrix,

Ti its i-th column and Tj its j-th row. G : {0, 1}M × {0, 1}k → {0, 1}M is



3.3. SECURE EVALUATION OF GARBLED CIRCUITS WITH LESS
MEMORY 41

a PRP; H : {0, 1}⌈logm⌉ × {0, 1}k → {0, 1}ℓ is a random oracle which can

be implemented using a cryptographic hash function (in our implementation

we use SHA-1).

Overall, our modified protocol can be seen as operating on a stream of

data which is processed in chunks of size M .

Figure 3.3.1: Extension of OTm
ℓ with low memory footprint. W.l.o.g. m =

BM for B blocks of size M . G is a pseudo-random permutation and H is a

random oracle.

Security and Correctness The only modification we applied to the origi-

nal construction of [79] was the reordering of the messages sent into B rounds

of communication. For semi-honest parties, this does not reveal any addi-

tional information. Therefore, the correctness and security of our optimised

protocol in the semi-honest setting directly follows from the correctness and

security of the original construction, as proven in [79].
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Performance The computation and communication complexity of our

protocol is identical to that of the original construction of [79]. In contrast

to the implementation in [78], (which has a constant number of commu-

nication rounds, but requires memory linear in the total number of OTs

m), the memory consumption of our protocol is constant (for fixed block

size M), but requires m/M rounds of communication. We give performance

benchmarks for the improved OT extensions in Section 3.6.1.

3.3.2 Streaming Circuits and Garbled Circuits with a

Small Memory Footprint

As described in Sections 3.1 and 3.1.1, previous frameworks for secure two-

party computation (in the semi-honest adversaries setting) store the outgo-

ing wire labels of each gate in memory, and hence require memory linear

in the size of the evaluated circuit. More recent frameworks [78, 100, 103]

require memory only linear in the size of the sub-circuits, but these frame-

works suffer from the low performance of memory management of many

small objects (one object for each gate) and garbage collection.

During creation and evaluation of a (sub) circuit, only those wires that

are used in the future need to be held in memory – that is, only those that are

either an output wire of the circuit, or those used as input wires into a later

gate. This set of wires is called the working set. Thus, the minimum size

of the memory required to compute the circuit is defined by the maximum

working set. As described and implemented in [91], one strategy to keep

track of the working set is to annotate each wire with a usage counter that is

decremented on each use. When the counter reaches zero, the wire is deleted

from the memory. Similarly, sub-circuits are dynamically constructed and

deconstructed in VMCrypt [100], which creates additional overhead in the

online phase.
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We use a different approach – specifically where we shift the management

of the working set from the online phase to the compilation phase in order to

keep the online phase as lean as possible. In particular, the online phase of

our approach neither requires a usage counter, nor the allocation of memory

for each gate. The compilation of any given Boolean circuit has to be done

once only, and can be reused for unlimited SFE protocol executions. We

therefore not only reduce the memory requirements, but also keep the com-

putations as lean as possible by omitting both handling of usage counters

and dynamic object construction/deconstruction. During the compilation

phase, the compiler determines the maximum size S of the working set, and

stores this alongside the circuit description. The compiler allocates a slot ID

(starting from 0) to each input wire of the circuit. Next, the circuit descrip-

tion is generated as an ordered list of gates, where each gate is described as

a tuple (output slot ID; input slot IDs; truth table). Whenever a slot ID is

used for the last time, it is added to a list of available slot IDs, and can be

re-used as the output slot ID of a later gate. Note that all this is done in

the offline (compilation) phase. In the online phase, an array with S slots

is allocated where each slot can hold a wire label. Then, the gates are read

one-by-one from the circuit description: the gate’s input labels are taken

from the slots given by its input slot IDs and the output label is stored to

the slot specified by the gate’s output slot ID. We internally keep a counter

of the gate ID which is used to construct the garbled tables.

We emphasise that the compilation of a function need only be completed

just once, since the resulting circuit is independent from the inputs, and can

therefore be reused.

In future work, the compiler can be extended to re-arrange the order of

the gates in order to reduce the size of the working set as described in [83].

However, as noted in [91], determining a topological order of the circuit

with the minimum size of the working set is known to be an NP-complete

problem.
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We further note that, in principle, generation of garbled circuits can

be implemented such that the amount of memory is constant, by pseudo-

randomly deriving the wire labels from the gate ID (as described in [82]).

However, this is essentially a time-memory tradeoff, and cannot easily be

combined with the highly efficient free-XOR technique.

3.3.3 Sub-Circuit Compilation

A design goal of our framework was to keep the online phase of the circuit

evaluation as lean as possible. Due to the topological ordering of the circuits,

the engine never has to hold more than one gate description in memory.

Once a gate is processed, the information can be discarded (except for the

intermediate wire labels). The circuit evaluation engine reads the circuit

description from a file with a format similar to Fairplay. In order to re-use

sub-circuits, we use slot IDs to index the wires in the sub-circuit. A slot ID

can be seen as a virtual register that can hold a wire label and can also be

re-used. For the gate ID, (which needs to be unique in the overall circuit,

as it is used for encrypting the non-linear gates), we use a counter which

is incremented for each non-linear gate. A gate is described by its output

slot ID, its input slot IDs, and its truth-table. An example is shown in

Figure 3.3.2, which describes the one-bit comparison circuit from [88]. We

also support a binary file format, which is more efficient to read using our

engine.

The circuit to be computed often consists of several calls to the same

sub-routine. For instance, AES encryption consist of three sub-routines: S-

Box, AddRoundKey, and MixColumns, which are repeatedly called. The

number of invocations are shown in Table 3.3.2.

Our framework allows for sub-circuits to be reused in a similar fashion

to [78], except that we do not instantiate a new gate object in each invocation

of the sub-circuit. Overall, for AES we do not create the entire circuit with

24,720 gates, but only 3 sub-circuits for the sub-functions listed above, with
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sub-routine invocations

S-Box 160

AddRoundKey 10

MixColumns 9

Table 3.3.2: Number of invocations of the sub-routines in AES encryption

inputsCreator: 0 // creator’s input is r0

inputsEvaluator: 1 // evaluator’s input is r1

outputsCreator:

outputsEvaluator: 0 // evaluator’s output is r0

numberOfRegisters: 2

numberOfGates: 2

0;1,0;1 // r0 = r1 and r0

0;1,0;6 // r0 = r1 xor r0

Figure 3.3.2: A one-bit comparison circuit. Comments (from // on) are not

part of the input.

a total of just 803 gates. In our implementation the creation of the gate ID

is decoupled from the circuit definition – thus ensuring that in every reuse of

a sub-circuit, all gates have a unique gate ID, and therefore the security of

the underlying garbled circuit protocol, (as proven in [98, 119]), still holds.

We provide a compiler that converts circuits described in the format

of [78] into our format.

3.4 High Performance Implementation

We optimise several aspects of the FastGC framework [78], as described

in the following. We emphasise that our optimisations do not modify the

underlying cryptographic protocols, but only the way they are implemented.
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Therefore, and because we work in the semi-honest setting, the proofs of

security of the original protocols [98] still hold for our optimisations.

3.4.1 Improved Base OTs

In order to improve the performance of the k base OTs with the OT protocol

of [108], we split up the computationally intensive public key operations into

multiple threads such that each of the N threads performs k/N base OTs

(independent of each other). Furthermore, we also experimented with an im-

plementation of the base OTs over an elliptic curve instead of over FP (the

latter was used in the implementation of [78]). This resulted in a reduction of

the communication complexity, but unfortunately worse runtimes. Although

the complexity of the modular exponentiations is significantly reduced due

to the smaller key sizes in elliptic curves, the additional computations for

arithmetic on elliptic curves outweigh the gains for the faster modular ex-

ponentiations in our implementation. Our performance benchmarks for the

improved base OT implementations are given in Section 3.6.1.

3.4.2 Caching of Circuits and Communication

In order to improve the performance of garbled circuit evaluation, we cache

both circuit descriptions and network packets during garbled circuit stream-

ing – resulting in a corresponding time-memory trade-off as described next.

In some circuits, the same sub-circuits are reused many times (cf. Section

3.3.3). Instead of reading the description of the sub-circuit from a file on

every instantiation (or re-generating it as implemented in previous frame-

works), we optionally cache its description once in memory. The memory

consumption is 32 bytes per cached gate.

Sending both the creator’s input wire labels, and the garbled tables im-

mediately after creation (as implemented in [78]) leads to an inefficient use

of the network, because of small packet sizes and an unnecessary large num-
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ber of packets. By using fixed sized buffers on the communication channels,

we greatly improve the performance of the network usage.

In our benchmarks in Section 3.6, we use circuit caching and network

buffers of size 9,000 bytes.

3.4.3 Compiler

We also provide a compiler to transfer circuit descriptions in the format

of [78] into our format. The compiler determines the maximum working set

and assigns the slot IDs accordingly.

3.5 Applications

We compare the performance of our implementation to the performance of

previous frameworks using the following applications. We show that choos-

ing a more appropriate circuit representation of the problem results in sig-

nificantly smaller circuit sizes.

Hamming Weight

Some applications, e.g., privacy-preserving face recognition [113], need to

securely compute the Hamming distance dH(~a,~b) between two ℓ-bit strings

~a, ~b. As shown in [78], this can be done by XOR-ing ~a and ~b bitwise and

computing the Hamming weight h(·), i.e., the number of “ones” in this

binary representation: dH(~a,~b) = h(~a⊕~b).

Hamming Circuit of [78]. The authors of [78] propose to use a tree of ad-

dition circuits which requires approximately
∑⌈log2 ℓ⌉

i=0 ℓ i
2i
= ℓ(2− ⌈log2 ℓ⌉+2

2⌈log2 ℓ⌉ ) ≈

2ℓ− log2 ℓ non-XOR gates. For the example of ℓ = 900 given in their paper

this yields approximately 1,790 non-XOR gates.

Improved Hamming Circuit. We use the optimised Hamming weight

circuit of [24]. This circuit contains only ℓ − h(ℓ) non-XOR gates for two

ℓ-bit strings as inputs, where h(ℓ) is the Hamming weight of ℓ. For ℓ = 900
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this yields 900−h((1110000100)2) = 896 non-XOR gates. This is about half

the size of the previous circuit.

Block Ciphers

Oblivious evaluation of a block cipher, where one party provides the key and

the other party provides the message and obtains the ciphertext, has many

applications as summarised in [119]. These include oblivious pseudo-random

functions (OPRFs), with applications to secure keyword searching [56], or

secure set intersection [81], blind MACs, and blind encryption.

As noted in [78], the key schedule of the block cipher does not need to be

computed securely within the garbled circuit. Instead, the party that knows

the key can run the key schedule on the plain key data to both expand it,

and to provide the expanded key as input to the protocol.

AES Secure evaluation of AES is commonly used as a performance bench-

mark for secure computation frameworks, e.g., [71, 78, 91, 119].

AES Circuit of [78]. Excluding the key schedule, AES-128 consists of

10 rounds where in each round 16 S-boxes are evaluated. As shown in [78,

Sect. 7], all other operations, e.g., MixColumns and AddRoundKey, can be

performed using only free XOR gates. The S-box presented in [78] has 58

non-XOR gates resulting in 58× 10× 16 = 9,280 non-XOR gates for AES.

Improved AES Circuit. Instead, we implemented the S-box of [25] which

consists of only 32 non-XOR gates resulting in a total of 32×10×16 = 5,120

non-XOR gates for AES. We note that the AES circuit implemented in [91]

uses the same S-box and has 9,100 non-XOR gates, but including the key

schedule.

PRESENT For the applications mentioned above, it might be sufficient

to use a block cipher that does not provide the strong security guarantees

of AES, but is more efficient to evaluate. An example for such an ultra-
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lightweight block cipher is PRESENT with a block length of 64 bit and an

80 bit key. PRESENT consists of 31 rounds where in each round a 4-bit

S-box is applied 16 times in parallel. We implemented PRESENT using

the S-box representation of [40, 41] which has 4 non-XOR gates. Overall,

PRESENT requires 31× 16× 4 = 1,984 non-XOR gates.

Fast Multiplication

To compare our implementation with FastGC [78] and TASTY [71] for cir-

cuits of medium size, we implemented secure multiplication using the fast

multiplication method of Karatsuba and Ofman [85]. For multiplication of

two 128 bit numbers, this circuit consists of 17,973 non-XOR gates.

Minimum

To compare our implementation with FastGC [78] and VMCrypt [100] for

circuits of large size, we implemented a circuit to compute the minimum of

106 20-bit numbers (half of the numbers are input by the server and the other

half by the client) using a circuit similar to the one described in [100, Fig. 2].

We use the OT extension with low memory footprint described in Section

3.3.1 such that the total memory consumption stays linear in the size of the

subset and not in the order of the total number of inputs. The overall circuit

has 2× (106 − 1)× 20 ≈ 40,000,000 non-XOR gates.

There are different approaches to compute this functionality, demon-

strating the flexibility of our framework. It enables a trade-off between

execution time (shown in Table 3.6.4) and memory consumption (shown in

Table 3.6.6):

a) The first solution has the lowest OT overhead – by completing the OTs

for all inputs first, and then evaluating a large circuit with a working set

of size 2 ∗ 107. Obviously, this approach requires the maximum amount

of memory (800 MB).
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b) As another extreme measure, we can iteratively compare one input each

at a time with the previously found minimum value. This approach needs

the minimal amount of memory (18.4 MB), yet introduces additional

overhead.

c) Our framework allows one to choose an intermediate approach, where

we iteratively compute the minimum of a subset of 500 inputs and the

minimum of the previous iteration. This sub-circuit has 19,960 non-XOR

gates and a working set of 10,022 labels, and is small enough to be cached

in memory – the total memory requirement is 21.5 MB.

3.6 Performance Benchmarks

In the following we show that the implementation of our improvements result

in substantially better performance than previous frameworks.

3.6.1 Oblivious Transfers

The following performance benchmarks were performed on two Apple com-

puters with a dual core processor each (Intel Core i5 2.5GHz and Core i7

1.8GHz) running MacOS X 10.7.4 and Java 1.6.0 33, connected via 802.11n

WIFI.

We observed that, because of the JAVA just in time compiler, the runtime

decreases in the first few runs due to compiler optimisations. Therefore, we

executed each protocol 1,000 times and took the average. All benchmarks

were executed with the default JAVA VM parameters.

The performance of our improved implementation for the base OTs (cf.

Section 3.4.1), in comparison with the original implementation of [78], is

shown in Table 3.6.3. Thread management introduced additional overhead,

therefore the execution time for the two threaded version is not quite half

the execution time for the single threaded equivalent. However, running
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four threads on a two-core processor reduced the overhead, and we achieve

a runtime of just 153 ms compared with the 286 ms of the single threaded

version.

single threaded time

over FP [78] 286 ms

over EC 560 ms

multi threaded (over FP ) time

2 threads 182 ms

4 threads 153 ms

Table 3.6.3: Comparison of base OT implementations.

For the OT extensions (independent of the performance of the base OTs),

our improved implementation of the protocol of Section 3.3.1 can evaluate

about 400,000 OTs per second; that is, 2.5µs per OT, a factor of 6 im-

provement over the 15µs reported in [78] (which used faster Intel Core Duos

E8400 3GHz and a faster local area network).1 We emphasise that this

optimisation is very beneficial for applications where the circuit has many

inputs, e.g., for converting from homomorphic encryption to garbled circuits

and subsequently finding the minimum – a very common building block in

privacy-preserving protocols for biometric matching [17, 71, 77].

3.6.2 Online Time

We changed our benchmark setting for measuring the online time – that

is, the time from after the connection is established and the base OTs are

completed, until the end of the protocol. The following benchmarks were

1For completeness we note that [111] claims an actively-secure OT extension that can

be implemented at about 500,000 OTs per second based on unpublished optimisations

(cf. Appendix A and E in the full version of their paper).
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executed on a single iMac A1311 with an Intel Core i3 3GHz processor using

the loopback network interface, because a network introduces additional

overhead, depending on the type of network, load on the links, etc. and we

seek to show the performance of the protocol unaltered by network overhead.

Our improved implementation evaluates about 500,000 non-linear gates

per second (2µs per gate) on the same host (setting as described above),

and about 350,000 non-linear gates per second (3µs per gate) over a WLAN

(setting as described in Section 3.6.1). In contrast, [78] reported 96,000

non-linear gates per second (10µs per gate) over a LAN.2

In the following we show that the online time of our framework when

evaluated on the same host as described above (i.e., assuming an ideal net-

work) is up to 10 times faster than that of the FastGC [78] framework. The

comparison between our implementation and FastGC [78] for the applica-

tions described in Section 3.5, both executed on exactly the same machine,

is summarised in Table 3.6.4.

Using the optimised Hamming circuit already improves the result of [78]

by about 40%. Executed with our implementation, we achieve online times

which are more than 10 times faster than the original Hamming circuit

evaluated with FastGC.

The results for the AES cipher are similar. Choosing the improved circuit

almost halves the online time – but again, the execution with our implemen-

tation is approximately 12 times faster than the previously published fastest

implementation. Due to its smaller gate count, PRESENT is almost 4 times

faster than the original AES circuit, and twice as fast as the improved AES

circuit.

The multiplication circuit took 45 ms online time to evaluate in our op-

timised framework. The same circuit implemented in FastGC [78], and run

on the same machine, took 499 ms, – more than 10 times longer. This

2In the malicious setting, [88] report 82,000 non-linear gates per second (12µs per

gate) on a cluster and [111] 20,000 gates per second (50µs per gate) over an intranet.
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Circuit non-XOR gates FastGC [78] Our Implementation

Original Hamming 1,793 64 ms 8 ms

Improved Hamming 896 39 ms 6 ms

Original AES 9,280 204 ms 27 ms

Improved AES 5,120 113 ms 16 ms

PRESENT 1,984 53 ms 7 ms

Fast Multiplication 17,973 499 ms 45 ms

Minimum 40,000,000

a) 138 s

b) 272 s

1,250 s c) 128 s

Table 3.6.4: Comparison of circuit sizes and performance when run on the

same machine.

result supports the fact that the improved online time of our implementa-

tion, in particular for medium size circuits, is substantially faster than that

of [78], even without circuit-specific optimisations. According to [71, Fig. 7],

TASTY takes approximately 4,000 ms setup time, and 700 ms online time

to evaluate the same circuit on two desktop PCs with Intel Core 2 Duo CPU

(E6850) running at 3GHz connected via Gigabit Ethernet. We emphasise

that TASTY does not use streaming, but rather pre-computes the OT ex-

tensions and generates and transfers the garbled circuit already in the setup

phase; as such, the online time in TASTY consists only of the very efficient

online OTs of Beaver’s construction [8] and garbled circuit evaluation; in

contrast, our online time includes the computationally more expensive OT

extensions, plus creating and transferring the garbled circuit (which is min-

imised due to streaming). Overall, for this application, the online time of

our improved framework is faster than TASTY by a factor of approximately

16 times, whereas our setup time is as low as 153 ms for the base OTs (cf.

Table 3.6.3), i.e., 26 times faster.
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We chose three different approaches to compute the minimum. The one

with the smallest overhead for the OT protocol (a) has a runtime of 138 s, but

the highest memory consumption. The other extreme, iteratively comparing

one input each at a time with the previously found minimum (b), needs

the minimal amount of memory (18.4 MB) but the maximal total runtime

(272 s), as the OT protocol introduces a significant overhead. The last

approach (c) realises a trade-off between fast online time and low memory

consumption. We iteratively compute the minimum of a subset of 500 inputs

combined with the minimum of the previous iteration. This sub-circuit has

19,960 non-XOR gates and a working set of 10,022 labels, and is small enough

to be cached in memory – the total memory requirement is 21.5 MB and the

total runtime is 128 s. In contrast, when evaluating the circuit for approach

(c) on the same machine with FastGC [78], this took approximately 1,250 s

and 189 MB memory – specifically more than 9 times longer and 9 times

more memory requirement compared with our implementation. According

to [100, Fig. 8], VMCrypt takes 44.5 min on a slower CPU (Thinkpad X301

laptop with 3 GB RAM and a 1.6 GHz Intel Core2 Duo processor running

Ubuntu Linux over the loopback interface), i.e., about 10 times longer than

our approach c), allowing for the fact that our CPU is about twice as fast.

We assume that our improved performance stems mainly from the fact that

we do not allocate and free many small objects.

3.6.3 Memory Consumption

The memory consumption of a SFE protocol is dominated by the number of

garbled labels concurrently held in memory. We showed that all other ele-

ments of the protocol execution require only a constant amount of memory.

Table 3.6.5 shows the memory consumption for the applications described

in Section 3.5. It shows the total number of gates in each circuit, which

coincides with the memory consumption of classical implementations like

Fairplay [101] or TASTY [71].
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Some circuits can be divided into sub-circuits, that can be re-used. For

instance, the block ciphers AES and PRESENT consist of three sub-routines

that are called frequently. The combined size of these sub-circuits is signifi-

cantly smaller than the original circuits, and therefore leads to large memory

savings. However, not every problem is divisible and therefore the sub-circuit

technique will not always improve memory consumption (see, for instance,

the Hamming circuits or the fast multiplication circuit).

The working set technique as described in Section 3.3.2 will always im-

prove the memory footprint, as not reusing any slotID will result in exactly

the same memory footprint as the circuit. We achieve significant memory

savings for all applications.

Circuit
tot. number gates of

working set
of gates sub-circuits

Orig. Hamming 7,163 7,163 1,800

Impr. Hamming 5,362 5,362 1,800

Original AES 36,720 878 256

Improved AES 24,720 803 256

PRESENT 8,496 145 128

Fast Multipl. 57,072 57,072 1,074

Minimum a)

137,999,862

137,999,862 20,000,002

Minimum b) 414 104

Minimum c) 69,000 10,022

Table 3.6.5: Comparison of the number of gates required to be held in

memory for the classical approach, division into sub-circuits, and reduction

to working set.

We measured the memory consumption of our Implementation to give an

indication as to how our memory saving techniques benefit real programs.

However, measuring the memory consumption of a Java program is fuzzy,
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since released objects remain on the heap until the garbage collector deletes

them, and the garbage collector itself is managed by the Java virtual ma-

chine. Thus, the heap contains not only the currently used objects, but

also released objects. Therefore the size of the heap will be greater than or

equal to the size of the currently used objects. We measured the maximum

heap consumption during a protocol run, since this gives an indication of

how much memory is needed for a runtime optimal execution. The proto-

cols might run with smaller heap sizes, but then the virtual machine has to

invoke the garbage collection more often, resulting in longer runtimes.

Table 3.6.6 shows our measurements for the different applications.

Circuit FastGC Our Impl.

Orig. Hamming 28.5 MB 17 MB

Impr. Hamming 26 MB 17 MB

Original AES 20.3 MB 16.9 MB

Improved AES 20.2 MB 18.7 MB

PRESENT 18.9 MB 18.6 MB

Fast Multipl. 74.4 MB 15 MB

Minimum a) 799.7 MB

Minimum b) 189 MB 18.4 MB

Minimum c) 21.5 MB

Table 3.6.6: Comparison of the memory consumption.

It is important to stress that, although the memory consumption of the

protocol implemented in a different programming language might be smaller

compared with our implementation, the overall trend stays the same.

The memory consumption of FastGC is linear in the total number of

gates, whereas in our implementation it is linear in the size of the working set.

Although for circuits that are divisible into many small sub-circuits (such

as AES or PRESENT) the memory consumption of both implementations
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is almost the same, the memory efficiency advantage of our implementation

becomes obvious for larger circuits. Compared with FastGC, we achieve

a memory consumption reduction by a factor of 5 for Fast Multiplication,

and by factor of 8 for Minimum approach c) – indeed, by combining the

repeated use of a sub-circuit and then holding the working set in memory,

we can evaluate the Minimum circuit with almost 140 million gates using

only 21.5 MB of memory.

3.7 Conclusion

In this chapter, we have presented a new implementation of Yao’s garbled

circuit two-party SFE protocol with significantly better performance than

previous frameworks. We focus on efficient use of memory. By decoupling

memory demand from the circuit size, and presenting an OT extension with

fixed memory consumption overhead, we presented an implementation with

low memory footprint.

These improvements enable our implementation to evaluate bigger cir-

cuits with less memory. In particular it enables the usage of SFE protocols on

devices with limited memory (mobile phones, wearables, internet of things).

We also showed that choosing an appropriate Boolean circuit represen-

tation can significantly improve performance. We improved a previously

published implementation of Hamming distance by 39% and AES encryp-

tion by 45%.

Our implementation decouples the unique gate IDs, which are important

for the security of the encryption function, from the circuit description. This

enables the framework to re-use parts of the circuits and dynamic circuit

sizes.

In the next chapter, we present a solution to the scaling problem – one

that uses this framework to evaluate a dynamic circuit with size determined

at runtime.
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Chapter 4

Conversion of Real-Numbered

Privacy-Preserving Problems

into the Integer Domain

Secure Multiparty Computation (SMC) enables untrusting parties to jointly

compute a function on their respective inputs without revealing any more

information than the outcome itself. As we have seen, there are many avail-

able algorithms and tools to support SMC, but almost all techniques for

SMC support only integer inputs and operations.

We present a secure scaling protocol for two parties to map real num-

ber inputs into integers without revealing any information regarding their

respective inputs. The main component is a novel algorithm for privacy-

preserving random number generation. We also show how to implement the

protocol (using Yao’s garbled circuit technique), and provide an implemen-

tation using the memory efficient secure two-party framework we described

in Chapter 3.

59
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4.1 Introduction

For the last 30 years the field of privacy-preserving techniques for distributed

computation, also called Secure Multiparty Computation (SMC), has been

growing. It offers solutions for multiple parties to compute functions with-

out revealing their respective inputs to each other. These techniques have

come a long way from early theoretical ideas, now providing practical solu-

tions for problems such as electronic voting, auctions, data mining, network

management and optimisation.

Almost all secure multiparty computation techniques have a message

space consisting of a finite set of integers, and the operations they provide

are only defined over the integers. What if one wants to engage in a privacy

preserving protocol with real numbers, or floating point approximations?

One can either extend a SMC technique to support fixed-point or floating-

point arithmetic, or alternatively create a mapping from the inputs into the

integer space, and then use conventional SMC. Catrina et al. [31] extended

the ideas of secure computation based on secret sharing [43] to support fixed-

point numbers. It introduces additional complexity, as inputs either have

to be converted into the same fixed-point type, or integer and fractional

parts of a number have to be treated separately. Fouque et al. [54] based

their idea on homomorphic encryption; however, an additional invocation of

Gauss’ algorithm for finding a basis in a 2-dimensional lattice is necessary to

recover the results of a computation. This construction limits the amount of

additions and multiplication. Franz et al. [55] also use homomorphic encryp-

tion, but they chose a logarithmic representation of floating-point numbers

for fixed maximum relative error. The numbers must necessarily come from

some pre-defined interval, and each gets represented by three different pa-

rameter. In each subsequent computation, the three parameters need to be

treated separately. Thus the first approach of extending SMC introduces a

great deal more complexity, and limits the choice of SMC techniques to just
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a few. The latter, as used in the works of [14, 16, 110], raises an interesting

privacy question: How do two parties agree on a mapping without revealing

information about their inputs?

In this chapter, we present the first secure scaling protocol for two parties.

It jointly enables them to agree on a mapping (by scaling) in a privacy-

preserving manner and to use the scaling without the mapping being shared.

The scaling factor is an intermediate value that can be hidden. The key

building block for this protocol is a novel algorithm for privacy-preserving

random number generation. We also show an efficient implementation of the

protocol.

4.2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) protocols enable parties to carry out

distributed computation tasks without revealing their inputs to each other.

We describe different SMC techniques in Chapter 2. There are a vari-

ety of protocols for secure multiparty computation; these vary in assump-

tions, security guaranties, number of supported parties, performance and

supported operations (see [58] for an overview). However, our protocol

translates naturally into a Boolean circuit and we therefore use Yao’s [144]

protocol for SMC. We describe his protocol in detail in Section 2.3.3.

In the next paragraph, we will recap the definition of a Boolean circuit

as both a refresher, and to clarify notation.

Boolean Circuit: A Boolean circuit consists of wires and gates. The

wires transmit a value {0, 1}, and the gates compute a Boolean function on

their input wires; they then output the result to another wire. This wire

may then be connected to the input of another gate or be an output value of

the circuit (Figure 4.2.1). Mathematically we describe a circuit by a series

of functions gi(α, β), α, β ∈ {0, 1}, gi : {0, 1}
n → {0, 1}.
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α β γ

g1

g2

δ = g2(g1(α, β), γ)

with α, β, γ, δ ∈ {0, 1}
and gi : {0, 1}

2 7→ {0, 1}

Figure 4.2.1: A Boolean circuit consisting of 2 two-input gates

Once the input wires to a gate are given values α, β, it is possible to

compute g1(α, β) and assign it to the output wire which becomes an input

to g2(·, ·), etc. The output of the circuit is given by the values of the out-

put wires of the circuit. Thus, computing the circuit C is essentially just

allocating appropriate Boolean values to all wires of the circuit.

4.3 Secure Mapping

In order to apply a generic SMC protocol to real numbers, or floating point

approximations, one can define a mapping from the real inputs into the

integer space, and thereafter use conventional SMC.

The obvious approach to map real numbers to a finite set of integers

is scaling and quantisation. Let r ∈ R be the real number input. Then

i = ⌈s · r⌋ is the mapping from r to i, where ⌈·⌋ is the function that rounds

to the nearest integer, and s is a scaling factor the parties agree on.

For example, let A = (0.3, 7, 0.29) be the secret inputs of party A, and

B = (9, 3.3, 3.2) the inputs of party B, respectively. A scaling factor of

s = 100 maps their inputs to Ã = (30, 700, 29) and B̃ = (900, 330, 320).

It is easy to see that the scaling factor leaks information about the inputs,

since it has to be chosen such that both all inputs are mapped into the finite

set of integers and they are still distinguishable. Each party can support a

different set of scaling factors, depending on their respective inputs.
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If party A and B want to engage in a SMC protocol that supports 10 bit

integer inputs (0 to 1023), then the set SA of possible scaling factors sA for

the inputs of party A in this example is SA = {sA,with 100 ≤ sA ≤ 146}

and SB = {sB,with 10 ≤ sB ≤ 113}, respectively.

Revealing these sets to each other leaks information. In particular, the

smallest and the biggest input can be approximated by dividing the integer

input bandwidth by the biggest and smallest possible scaling factor. Both

parties want to agree on a scaling factor without having to reveal any infor-

mation about their supported sets other than that they contain the chosen

scaling factor.
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Figure 4.3.2: SA and SB show the sets of possible scaling factors for party A

and B. We pick a factor uniformly at random out of the intersection SA∩SB.

We propose two protocols which offer a trade-off between privacy and

efficiency.

• The Secure Scaling protocol picks a scaling factor uniformly at random

from the intersection of the ranges given by two parties. At the end of

the protocol the scaling factor gets revealed to both parties. It offers

the best efficiency, as only the determination of the scaling factor is

done in the encrypted space. It also offers more flexibility, because

after the parties mapped their respective inputs into the integer space,

they can then engage in a secure multiparty computation choosing any

SMC technique.
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• However, revealing the scaling factor to the parties raises a privacy

issue: it can be used to infer some information, as discussed in Section

4.4.4. To mitigate this issue, we propose a Secure Mapping protocol

with better privacy guarantees at the cost of efficiency. It performs the

whole mapping process in the encrypted space, and, by subsequently

feeding the encrypted, mapped inputs into succeeding SMC protocols,

the scaling factor stays hidden and cannot be inferred. Performing

the mapping in an encrypted fashion introduces additional costs, and,

as the outputs cannot be decrypted, the choice of privacy-preserving

techniques for the subsequent protocol is limited. The best choice is to

stay with the garbled circuit technique, however, there is a protocol [89]

to convert garbled values into homomorphically encrypted values.

We first present the Secure Scaling protocol, as it is also the foundation

of the Secure Mapping protocol. The basic idea is to first compute a secure

set intersection and then, without revealing the intersection, pick an element

at random (see Section 4.4.4). While secure set intersection protocols are

readily available, we propose the first protocol (of which we are aware), to

draw a random number from a private range.

4.4 Drawing Random Numbers from a Pri-

vate Range

We do not want to reveal the range of possible scaling factors, once it is

computed with the privacy-preserving set-intersection protocol. Instead, we

keep it in the encrypted space and use it as the input to the random number

algorithm. The goal of this algorithm is to pick an element uniformly at ran-

dom out of the range, without giving the participants any more information

than the randomly drawn element itself.

We first show the simple case where the range starts with 0 and has a
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number of elements that is a power of two. We then allow for an arbitrary

number of elements, still starting with 0, and finally we present the algorithm

where both bounds of the range are arbitrary values.

4.4.1 Range N2m−1 = {0, 1, 2, . . . , 2
m − 1}

The set N2m−1 = {0, 1, 2, . . . , 2m − 1} is the set of integers that can be

represented by an m-bit number. If we choose m random bits, each with

probability 1/2, the binary number denoted by these bits will be uniformly

distributed over N2m−1. The algorithm combines random bits chosen by

both parties, and then chooses m of these.

Let the private input m come from a finite set I = {0, 1, . . . , n}, which is

agreed on by both parties, and, N2n−1 = {0, 1, . . . , 2
n − 1} be the set of all

n-bit integers. In this context m would be the output of a preceding SMC

protocol. Both parties choose r(A), r(B) ∈R N2n−1, respectively, where ∈R

means chosen uniformly at random from the set. The algorithm first com-

bines the random n-bit inputs by the bitwise exclusive OR operation (XOR)

to get r, and then selects the m least significant bits of r by computing the

output x = r mod 2m.

Algorithm 3 urandom1: Drawing x randomly from {0, 1, 2, . . . , 2m − 1}

Input: (private) m ∈ I

Output: x = urandom1({0, 1, . . . , 2m − 1})

r ← r(A)XOR r(B) {r(A), r(B) ∈R N2n−1, where r(i) is provided by party i}

x← r mod 2m

return x

Correctness: It is easy to see that x ∈ {0, 1, . . . , 2m− 1} since that is ex-

actly the co-domain of r mod 2m. We also have to show that x is a uniformly

distributed random variable over that range.
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Lemma. If at least one of r(A) and r(B) is chosen uniformly at random out

of N2n−1 = {0, 1, . . . , 2n − 1} then r = r(A)XOR r(B) is a random number

uniformly distributed over N2n−1.

Proof. Let N2n−1 = {0, 1, 2, . . . , 2n − 1} be the set of all integers that can

be represented by n bits. If r(A) is a random variable on N2n−1, then there

exists a unique random vector (r
(A)
1 , . . . , r

(A)
n ) on {0, 1}n such that r(A) =

∑n

i=1 2
i−1r

(A)
i . If r(A) is uniformly distributed over N2n−1 then the r

(A)
i ’s are

mutually independent Bernoulli random variables with parameter 1/2. r =

r(A)XOR r(B) can now be written as r =
∑n

i=1 2
i−1ri with ri = r

(A)
i XOR r

(B)
i .

Note that the XOR operation returns 1 iff both arguments are different.

Assume that r(A) is uniformly distributed. Therefore

Pr[ri = 1|r
(B)
i = 0] = Pr[r

(A)
i = 1] = 1/2

Pr[ri = 1|r
(B)
i = 1] = Pr[r

(A)
i = 0] = 1/2.

Note that the value of r
(B)
i has no influence on Pr[ri = 1]. Thus Pr[ri =

1] = Pr[ri = 0] = 1/2. XOR is a bitwise operation and the ri are mutually

independent and thus r is uniformly distributed over N2n−1.

Now x = r mod 2m can be rewritten as x =
∑m

i=1 2
i−1ri since the

mod 2m operation selects the m least significant bits of r. The ri are mutu-

ally independent Bernoulli random variables with parameter 1/2, hence x is

a random variable uniformly distributed over {0, 1, . . . , 2m − 1}.

Security: We want to keep the input m private. We ensure that the

parties do not learn it via use of the garbled circuit technique (see Section

4.5). What remains evident is that neither party can choose their input

to manipulate the output. A successful attack would distort the uniform

distribution of the output. However, we know from Lemma 4.4.1 that the

output is uniformly distributed as long as at least one input is uniformly

distributed. So even if party A (or party B) deviates from the protocol, and
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deliberately chooses a specific value for r(A) (or r(B)), the output will remain

uniformly distributed.

4.4.2 Range Nq = {0, 1, . . . , q}

In this section, we relax the restriction that the size of the range must be an

exact power of two. Now, we allow any range Nq = {0, 1, . . . , q} with q ∈ N.

The number of elements in that range is not necessarily a power of two and

therefore we can’t directly apply Algorithm 3.

We use the acceptance-rejection method to construct a Las Vegas type

algorithm1 that uses Algorithm 3 repeatedly until it produces a value in the

required range. To do this, we extend Nq to N2m−1 so that it is of the form

of Algorithm 3. That is, we choose the unique m ∈ N with 2m−1 − 1 <

q ≤ 2m − 1, and then run the algorithm as described in Algorithm 4. This

approach translates naturally into a compact circuit with a number of gates

that is linear in the input size.

Algorithm 4 urandom2: Drawing x randomly from {0, 1, . . . , q}

Input: (private) q ∈ N2n−1

Output: x = urandom2({0, 1, . . . , q})

m← ⌊log2(q) + 1⌋

repeat

x← urandom1({0, 1, . . . , 2m − 1})

until x ≤ q

return x

1A Las Vegas algorithm is a randomised algorithm that “gambles” with the resources

used for the computation. That is, its runtime is random, but the expected runtime is

finite. In contrast, a Monte Carlo algorithm is a randomised algorithm whose runtime

is deterministic, but whose output may be incorrect with a certain probability. Thus it

“gambles” with the correctness of the result.
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Correctness: When the algorithm terminates x ∈R {0, 1, . . . , q} since the

exit condition ensures x ≤ q, and urandom1 produces non-negative numbers.

x is uniformly distributed since acceptance-rejection sampling of a subset of

a uniform distribution is again uniformly distributed [139].

The number of iterations of the loop follows a geometric distribution.

Let X be a random variable describing how many iterations Algorithm 3

takes to get a valid result. The probability that X ≤ k with k ∈ N is

Pr[X ≤ k] = 1− (1− Pr[x ≤ q])k.

The probability that the exit condition is fulfilled in one iteration is

Pr[x ≤ q] ≥
2m−1 + 1

2m
>

1

2
,

because 2m−1 − 1 < q ≤ 2m − 1, and so Pr[X ≤ k] > 1− (1/2)k.

That means that even in the worst case the expected number of iterations

is less than 2, and the probability of less than 10 iterations is greater than

99.9%. We illustrate the performance in Section 4.7.

Security: Again, neither party can distort the uniform distribution of the

random value by the same argument as for Algorithm 3. Nothing is learned

from the number of calls to urandom1 because it is purely probabilistic.

4.4.3 Range Np,q = {p, p+ 1, . . . , q}

In the most general case where the range is arbitrary, we first shift it to zero,

then use Algorithm 4 to compute a random value, and finally shift it back

to the initial range (See Algorithm 5 for details).

Correctness and Security: Correctness and security follow from the

same arguments as for Algorithm 4.
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Algorithm 5 urandom3: Drawing x randomly from {p, p+ 1, . . . , q}

Input: (private) p, q ∈ N2n

Output: x = urandom3({p, p+ 1, . . . , q})

m← ⌊log2(q − p) + 1⌋

repeat

s← urandom1({0, 1, . . . , 2m − 1})

until s ≤ q − p

return x = s+ p

4.4.4 Secure Scaling

Once we have a random number generator, we can build an efficient solution

for the secure scaling problem.

Both parties input their smallest (p(A), p(B)) and biggest (q(A), q(B)) pos-

sible scaling factors. The inputs p and q must be integer values, as we

subsequently use them as inputs in a SMC protocol. If the parties require

non-integer scaling factors, they can agree on a mapping between this non-

integer space and the integers beforehand. The first step is to determine the

intersection of these ranges by computing the boundaries of the intersection

as p = max(p(A), p(B)) and q = min(q(A), q(B)). In the second step, we use

the random number generator to select an element out of {p, p+ 1, . . . , q}.

Algorithm 6 The Secure Scaling algorithm

Input: p(A), q(A), p(B), q(B) ∈ N2n−1

Output: s ∈R {p
(A), p(A) + 1, . . . , q(A)} ∩ {p(B), p(B) + 1, . . . , q(B)}

p← max(p(A), p(B))

q ← min(q(A), q(B))

s← urandom3({p, p+ 1, . . . , q})

return s
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Correctness and Security: Correctness and security follow from the

same arguments as for Algorithm 4. However, although the SMC technique

guarantees that nothing can be learned about the inputs apart from what

can be inferred from the output, revealing the chosen scaling factor intro-

duces a privacy issue. Let p(A) = 1 and q(A) = 100. If the algorithm outputs

s = 100 then party A can infer that party B’s smallest input p(B) is likely to

be close to s. Assume that p(B) = 100, then the intersection of the two sets

contains only one element and therefore the algorithm outputs s = 100 with

a probability of 100%. In contrast, if p(B) = 1, then the intersection contains

100 elements, and the probability that the algorithm outputs s = 100 is only

1%. This privacy issue has to be considered when using the secure scaling

protocol. For the case where it is deemed unacceptable, we also offer the

Secure Mapping protocol as described in Section 4.6.

In the following section, we show how to implement all of the steps needed

in the Secure Scaling algorithm using garbled circuits.

4.5 Secure Scaling with Boolean Circuits

We compute the secure scaling algorithm with Yao’s garbled circuit tech-

nique by expressing it as a Boolean circuit. Boolean circuits are easily com-

bined, so we show the subcircuits corresponding to the elementary operations

in the algorithm.

We describe the complexity of each subcircuit by the number of non-

linear two-input gates in relation to the number of bits n needed to represent

the inputs p(A), p(B), q(A), q(B). A linear input gate has an even number of

zeros and ones in the truth table. The linear gates for a constant output or

the (negated) identity of an input wire can be trivially optimised away, e.g.

XOR gates can be evaluated essentially for free [90], therefore the dominating

factor for efficiency of the circuits is the number of non-linear gates.

• (min(q(A), q(B)), max(p(A), p(B))): To compute these we use the inte-
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ger comparison circuit described by Kolesnikov et al. [88], it has a

complexity of n non-linear gates.

• (m← ⌊log2(q−p)+1⌋): In this step we don’t actually have to compute

m, because all we need later on is a bit mask to select the ⌊log2(q−p)+

1⌋ least significant bits. Therefore we first compute t = q− p with the

integer subtraction circuit described in [88] and then we use a chain of

OR-gates (see Figure 4.5.3) to calculate the mask 2⌊(log2(t)+1⌋−1. This

circuit consists of n− 1 non-linear gates.
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tn−2tn−1
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Figure 4.5.3: A chain of OR gates to compute the mask y = 2⌊log2(t)+1⌋ − 1.

• (r = r(A)XOR r(B)): r is just a bitwise XOR between r(A) and r(B).

Therefore the complexity is 0 non-linear gates.

• (s = r mod 2m): Computing modulo a power of two is the special case

where we just want to select the m least significant bits of r. We can

achieve this by computing a bitwise AND between r and 2m − 1, the

bit-mask with the m least significant bits set to 1. This is exactly the

bit-mask we computed before. The complexity is n non-linear gates.

• (repeat until s ≤ q−p): Note that this loop has an unknown number of

iterations, and therefore it is impossible to generate the whole circuit

to compute the loop beforehand. However, in this case, where the

exit condition of the loop does not reveal any sensitive information,

we can use a step-by-step approach. We make use of the feature of

dynamic circuit generation of the SFE-framework described in Chapter

3. That is, the creator generates the circuit for one round of the
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loop, and then the evaluator evaluates the circuit, thus revealing the

result of the exit condition. Depending on that result, the creator

then generates either another round of the loop, or continues with the

remainder of the algorithm. Note that the disclosure of the result of

the exit condition gives neither party an advantage in inferring the

other party’s input, so long as their random inputs are kept private.

This privacy is guaranteed by the garbled circuit technique.

For the exit condition, we can reuse q− p, which we computed before.

Thus we only need an integer comparison circuit [88], which has a

complexity of n non-linear gates.

• (x = s + p): We use the addition circuit of [88] to compute this sum.

Again, the complexity is n non-linear gates.

Overall complexity: Let X describe the number of iterations of the

repeat-until loop in Algorithm 4. Then the number of non-linear gates add

up to 2n + 2n − 1 + X(2n) + n = 5n − 1 + 2nX . Since X follows a ge-

ometric distribution with success probability 1/2 < p ≤ 1, we know that

1 ≤ E[X ] < 2, thus the expected overall complexity is less than 9n.

4.5.1 Implementation

We chose the ME-SFE framework of Chapter 3 to implement our example

of the random scaling factor. Amongst other optimisation techniques used

in this framework, the following are particularly useful for our application:

• Pipelined circuit execution: The circuit generation and evaluation pro-

cesses are overlapped in time [78], thereby removing the need to con-

struct the complete circuit before the evaluation; this is useful here

because we cannot build the circuit in advance, given that the number

of iterations is dynamic.
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• Oblivious-Transfer extension: In [79], Ishai et al. show how to effi-

ciently extend Oblivious Transfer. One first must execute a certain

amount of conventional OTs, and then (by using this result) one can

generate a virtually unlimited number of very efficient OTs (see also

Section 3.3.1). Using the OT extension technique provides a speedup

by orders of magnitude; indeed, whereas the execution time of a tra-

ditional OT is somewhere in the order of milliseconds, with OT exten-

sions it reduced to mere microseconds only (see benchmark in Section

3.6.1).

The ME-SFE framework contains a library of circuits for common arith-

metic, which can be easily combined to describe the desired function. One

can combine circuits from, (and add circuits to), the library by extending

the CompositeCircuit class. For example, the implementation of the chain

of OR-gates circuit (as shown in Figure 4.5.3) is carried out by defining

subcircuits, and connecting them with wires as shown in Figure 4.5.4.

The source code of the implementation can be found as part of the ME-

SFE package available for download at: http://code.google.com/p/me-

sfe/.

4.6 Secure Mapping

Revealing the scaling factor can lead to privacy issues, as described in Section

4.4.4. One way to mitigate this issue is to carry out the full mapping in the

encrypted space.

The most common way to represent a real number input is by floating

point approximation. A floating point approximation of a number r consists

of a significand s, a base b, and an exponent e, such that r = s×be. Mapping

r to an Integer is a three stage process.

1. First we multiply the significand with the scaling factor.

http://code.google.com/p/me-sfe/
http://code.google.com/p/me-sfe/
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public class NextBitMask extends CompositeCircu it {

protected void c r eateSubCi r cu i t s ( ) throws Exception {

for ( int i =0; i<l −1; i++){

subC i r cu i t s [ i ] = OR 2 1 . newInstance ( ) ;

}

super . c r ea teSubCi r cu i t s ( ) ;

}

protected void connectWires ( ) throws Exception {

for ( int i =0; i<l −1; i++){

inputWires [ i ] . connectTo ( subC i r cu i t s [ i ] . inputWires , 0 ) ;

}

inputWires [ l −1] . connectTo ( subC i r cu i t s [ l −2] . inputWires , 1 ) ;

for ( int i =0; i<l −2; i++){

subC i r cu i t s [ i +1] . outputWires [ 0 ] . connectTo (

subC i r cu i t s [ i ] . inputWires , 1 ) ;

}

}

protected void def ineOutputWires ( ) {

for ( int i =0; i<l −1; i++){

outputWires [ i ] = subC i r cu i t s [ i ] . outputWires [ 0 ] ;

}

outputWires [ l −1] = inputWires [ l −1] ;

}

Figure 4.5.4: Implementation of the chain of OR-gates circuit as shown in

Figure 4.5.3
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2. Then we use the information of the exponent to select the integer part

of that product.

3. Finally, we have to account for rounding by checking the first digit

after the radix point, and, if closer to the next integer, increment the

result accordingly.

Note about privacy: Obviously, the mapped inputs cannot be revealed

to either party, as this would allow them to compute the scaling factor, lead-

ing to the privacy issues discussed in Section 4.4.4. Therefore, the mapped

inputs must be kept in the encrypted space and the subsequent protocol

must be chosen such that the output does not reveal any hints to infer ei-

ther the scaling factor, or any of the inputs. Although we require that the

mapped inputs are kept in the encrypted space, that does not mean that

the subsequent protocol is limited to the garbled circuit technique, as there

is a efficient protocol [89] to convert garbled values into homomorphically

encrypted values.

4.6.1 Implementation

We will only sketch the implementation of the secure mapping protocol.

• For the first part, we use the multiplication circuit of Section 3.5. It

has a complexity of O(llog2 3) ≈ O(l1.585).

• Every output digit can be either zero or any of the input digits. There-

fore we need for every output digit l+1 multiplexer to select the correct

digit. In total, this stage has a complexity of O(l2).

• For the last stage we need l + 1 multiplexer to select the first digit

after the radix point (O(l)). This is then fed into a comparison circuit

of [88] (O(l)) and the result added to the integer with an addition

circuit [88] (O(l)).
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4.7 Measurements

All our measurements were run on an iMac with a Core i3 3Ghz processor,

running Mac OS X 10.6.8 and Java 1.6.0 31. We ran measurements for four

different input sizes (10, 100, 1000 and 10000 bits). For each size we ran

the secure scaling algorithm 10000 times with inputs (p(A), p(B), q(A), q(B))

generated uniformly at random from the set of non-negative integers able

to be represented by the given number of bits. Figure 4.7.5 shows the dis-

tributions of the runtimes for the different input sizes. The single red line

denotes the median, the blue box include the data points from the 25th to

the 75th percentile, and the whiskers include all points up to 1.5 times the

size of the blue box. The resolution of the measurements is 1 ms; therefore,

the data points for the 10 bit input size are not particularly precise, and are

only included in the graph to highlight the overall trend (median, 25th, 75th

percentile and whiskers are all at 1 ms). The linear circuit complexity with

respect to input bit length is clear. Note also the very strong right skewness

of the data.

1

10

100

1000

   10   100  1000 10000
bitlength

tim
e 

in
 m

s

Figure 4.7.5: Runtime distributions of the secure scaling algorithm for dif-

ferent input sizes.
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Figure 4.7.6 shows the complementary cumulative distribution functions

of the number of iterations for different input sizes (that is, the probability

that a run has more than X iterations). We also added the worst case

scenario for 1000 bit inputs, whereby the inputs are chosen such that the

private range is 2999 and therefore the probability that the exit condition of

the loop is fulfilled is (2999 + 1)/21000 ≈ 1/2. We see that the input size has

little effect on the distribution. Even for the worst case, the probability for

a high number of iterations drops rapidly.
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Figure 4.7.6: Complementary cumulative distribution functions of the num-

ber of iterations for different input sizes.

4.8 Conclusions

In this chapter we have presented a protocol to solve the secure mapping by

scaling problem. It enables two parties to convert a real-numbered privacy-

preserving problem into the integer domain. Previous solutions to this prob-

lem either limit the choice of SMC techniques, or use a public, pre-defined

scaling factor. The first approach introduces more complexity, as the SMC
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operations on non-integer values are more computationally expensive than

their integer counterparts. Our solution does not introduce any limitations

on the choice of SMC techniques. The latter approach is not applicable in

a general sense, as if the input domains for the parties involved differ then

negotiating a scaling factor most likely leaks information about the inputs.

Our protocol enables the parties to input their respective range of possi-

ble scaling factors without revealing this information to their counterpart.

The main component of our solution is, to our knowledge, the first privacy-

preserving random number generator. We believe that it may be a useful

component for other privacy-preserving protocols. We show the practical-

ity of our scaling solution by an implementation of the protocol, using the

ideally-suited ME-SFE framework presented in Chapter 3.

This chapter concludes the part of this thesis where we improve the prac-

ticability of SMC. In the following chapters we focus on applying SMC tech-

niques to problems of network management. In the next chapter we present

a routing protocol which preserves the privacy of the routing configuration.



Chapter 5

Privacy-Preserving

Vector-Based Routing

After working on the practicability of secure multiparty computation in the

previous chapters, we now focus on applications of SMC to problems of

network management. In this chapter we present a routing protocol that

preserves the privacy of the routing configuration.

Security of routing protocols is a critical issue, as shown by the increasing

number of attacks on the Internet’s routing infrastructure [49]. One often

overlooked aspect of security is privacy. In the context of a routing protocol,

this essentially means the ability of a router to keep information (such as

its routing policies) private. BGP does this to some extent through design.

An Autonomous System’s policies are not explicitly revealed to other par-

ticipants in the routing protocol. Nevertheless, BGP still reveals a great

deal of information about the Internet and its participants. We propose a

privacy-preserving routing protocol, called STRIP, that reveals very little

information to participants in the protocol. For instance, participants can

find shortest-paths to destinations in the network without ever learning the

path lengths. Such privacy could be useful for a range of reasons; these in-

clude preserving the proprietary information captured in a routing policy, or

preventing an attacker from gaining valuable information about the network.

79
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We show the feasibility, performance, and costs of STRIP, with simulations

and implementations of the protocol.

5.1 Introduction

There is a long list of desirable features for a routing protocol. For in-

stance, it should be robust, distributed, scalable, and easy to configure.

There are now many protocols with different sets of these properties, but

more recently security of routing protocols has become a major issue. The

reason for this lies in the spread of routing protocols between untrusted par-

ties. The canonical example is inter-domain routing. The defacto standard

inter-domain routing protocol is the Border Gateway Protocol (BGP). The

rapid expansion of the Internet has led to proliferation of BGP speaking Au-

tonomous Systems (ASes): more than 40,000 at the time of writing. In the

Internet of yesteryear, the BGP speaking networks were almost like a club;

membership assured an element of civility. However, in recent years, such

trust has led to problems. There have been many documented problems

with BGP: spammers have exploited security vulnerabilities of BGP to send

unwanted, or illegal emails [123], and accidental and/or deliberate hijacking

of address space has caused large scale disruptions (for just a few examples

see [42,73,102]). Most of the resulting work on adding security to BGP has

focussed on authentication.

One aspect of securing routing protocols that has not received wide-

spread study is privacy. Of course, one could encrypt the individual trans-

actions of a routing protocol to prevent eavesdropping by external assailants.

However, privacy with respect to the other participants in a routing proto-

col is a much more interesting problem. Routing protocols are generally

designed to spread information. This is seen as a necessary step, as dis-

tributed control is one of the philosophical grounding points for Internet

design; yet nonetheless there are good reasons to wish to preserve privacy
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of routing information. The routing information of each party may contain

proprietary information that could be commercially or politically sensitive,

or may contain information rendering an attack against a relevant party far

easier.

BGP implicitly acknowledges the dichotomy of information hiding/spread-

ing. The protocol allows for each AS to have flexible, heterogeneous and dy-

namic policies, and BGP attempts to jointly determine a solution to these

routing policies. However, BGP hides internal policies by performing a “best

route” computation locally, and passing on the result. It doesn’t pass on

the policies used to make the decision. BGP’s route computation passes

only simple data (such as AS-paths) and locally defined attributes (such as

MEDs and communities). This has resulted in a protocol that is not trans-

parent. Its behaviour is unpredictable, and exhibits slow convergence [93],

persistent oscillation [68,138], and other negative features [30,67]; neverthe-

less, ISPs have clearly been willing to trade-off such negatives against their

desire to preserve privacy (BGPv4 has been a defacto standard for nearly

two decades [125]).

But does BGP hide enough? BGP routing data has been used to build

AS-level topologies of the Internet, and to infer relationships between ASes

[105,136,140,142]. The same ideas can and have been used for tasks such as

inferring customers of an ISP. This type of business intelligence can provide

a competitor with an unfair advantage. A further, more sinister, use for such

intelligence arises when one considers an antagonist planning an attack. The

more information about a network an antagonist can gather, the more likely

its attack will be successful. It is precisely this sort of information that

would be needed to mount a malicious hijack of address space [7, 23, 118].

Although attacks on BGP in the Internet are on the rise [49], the ma-

jority of participants in BGP are well intentioned, and some problems (in

the routing infrastructure) appear to have been caused by mistakes rather

than deliberate malfeasance. There are other networks where security is the



82 CHAPTER 5. PRIVACY-PRESERVING ROUTING

paramount concern, rather than something added on after the fact. There

are network operators who may wish to co-operate from time-to-time (i.e.,

by sharing traffic), yet who remain concerned that private details do not

leak from one network into another. A simple example exists in the mili-

tary setting, where national armed forces often co-operate in joint missions

– where lives depend upon being able to share accurate, up to date informa-

tion. However, today’s allies may be tomorrow’s combatants, and so parties

may simultaneously wish to maintain secrecy regarding their networks’ de-

sign and capabilities. Furthermore, in the operations of their own networks,

they may wish to limit the damage that can be done if a router (or group

of routers) is compromised. It is therefore interesting to explore the limits

to which a routing protocol can preserve the privacy of its participants.

Here, we shall thus present a routing protocol aimed at preserving ex-

actly that – privacy. We show that a great deal of information can be hidden;

in particular, we show that a common routing algorithm — the distributed

Bellman-Ford shortest-paths algorithm — can be performed without partic-

ipants learning distances!

We call our new protocol STRIP (Secure-Transitive RIP), after the iconic

distance-vector protocol RIP (the Routing Information Protocol). STRIP

conceals nearly every aspect of the network from its participants. Partici-

pants in the protocol learn their neighbours, and the next-hop router on the

route to a destination, but they discover very little else. In particular, par-

ticipants do not learn any routes or distances (other than to their immediate

neighbours).

In addition, the algorithm has other desirable properties. It uses a strong

method to authenticate potential paths, step by step, much as stronger ver-

sions of BGP security improvements aim to do. Thus we achieve authenti-

cation almost for free.

It is also easy to see how the algorithm can be extended. BGP uses

a path-vector algorithm that resembles a distance-vector protocol in some
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respects, and this chapter also presents a number of ways in which our

protocol can start to be adapted to the path-vector setting.

As always there are costs to security. We have implemented the proposed

protocol in both simulation software, and as a real distributed routing pro-

tocol; subsequent analysis of the performance overhead reveals that it is not

trivial. We do not suggest that the costs are warranted for the Internet in

general, but we believe that a thorough understanding of what is possible

should inform future routing protocol designers, and we leave it to them to

choose the tradeoff between privacy and overhead.

Privacy-preserving ideas have been applied to interdomain routing be-

fore. Zhao et al. [146] showed a verification mechanism for routing decisions,

and Gupta et al. [70] use a secure outsourcing approach to move the rout-

ing decision process from the routers to a centralised computation cluster.

Our work, which is motivated by an earlier presentation [129], maintains the

distributed nature of a routing protocol, and we do not rely on any addi-

tional players except a key distribution mechanism (PKI) which now exists

for BGP in RPKI [94]. Another difference is the type of information that

is kept private. Gupta et al. do not consider network information private,

whereas our solution not only protects policy but also a great deal of the

network information.

5.2 Secure Multiparty Computation

Secure multiparty computation protocols are a set of techniques, often cryp-

tographic in nature, which enable parties to carry out distributed computa-

tion tasks without having to reveal their private data.

We give a detailed description in Chapter 2. In our protocol we use

homomorphic encryption to securely compute a distributed sum.
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5.2.1 Distributed Sum with Homomorphic Encryption

An encryption scheme is called homomorphic if there exists an operation on

two ciphertexts that is equivalent to another operation on the corresponding

plaintexts: i.e.,

Enc(x)⊙ Enc(y) = Enc(x⊕ y),

for some operations ⊙ and ⊕. In our protocol we use an additive homo-

morphic encryption scheme, where the operation ⊕ corresponds to standard

arithmetic addition.

The elegant feature of this approach is that we can create a sum of a

series of values held by different parties, but which is encrypted. Only the

holder of the private key can decrypt it and determine the sum.

In detail, the secure distributed sum is computed as follows.

1. Assume we have n parties P1, P2, . . . , Pn with corresponding inputs

x1, x2, . . . , xn, and we wish (at completion) for party Pn to know the

sum

X =

n
∑

i=1

xi.

2. Each party encrypts their data with the public key of Pn to obtain

yi = Enc(xi;Pn).

3. WLOG we assume that they transmit cumulative sums to the next

party in sequence, i.e., party Pi sends the following to Pi+1,

y1 ⊙ y2 ⊙ · · · ⊙ yi.

4. Finally, Pn receives y1⊙y2⊙· · ·⊙yn−1, and decrypts it with its private

key and adds its own value xn.

Note that for more than two parties Pn learns nothing about x1, . . . , xn−1

apart from the sum
∑n−1

i=1 xi.

There are a number of possible homomorphic encryption schemes (see

overview in Section 2.2). Here we use Paillier encryption [114], which is
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homomorphic with respect to summation (as required), and comparatively

simple to implement. We describe Paillier’s scheme in Section 2.2.2.

5.2.2 Key distribution problem

The one critical requirement for the public-key encryption system is a Public-

Key Infrastructure (PKI). For a router to determine a route to a destination,

it has to know its public key. That is, it has to know the key before it has

a valid route to the destination. As such, it cannot ask the destination for

the key beforehand; yet even if this was possible, how can the router know

that this public key does indeed belongs to the destination, and not to an

attacker pretending to be the destination router?

This problem is not limited to our scenario – indeed, it is well known in

public-key cryptography applications. The most prominent solution to this

problem is the introduction of a trusted third party who provides the PKI.

They act as a public-key broker: verifying and linking identities to public

keys, and distributing those keys in a secure manner.

In general, creation of PKIs is non-trivial. However, the pressing need

for improved BGP security means the problem has been tackled for Internet

routing. A PKI system specially designed for routing infrastructure, called

RPKI (Resource PKI) [94], has already undergone some testing [116].

5.3 STRIP

We call our protocol STRIP (Secure-Transitive Routing Information Proto-

col). Its aim is to find the shortest paths through a network, while revealing

minimal information about that network.

The purpose of a routing protocol is to provide an automated and dis-

tributed means to create routing tables at each router. These are essentially

tables of destinations accompanied by next hops (the first step from the cur-

rent router along the path to the destination), along with some information
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about the paths (such as distances).

The “destinations” in our protocol might be the routers themselves, but

could equally be some aggregate such as the Autonomous Systems of BGP, or

some set of subnets attached to routers. However, for the sake of simplicity,

we shall equate destinations and routers here.

There are several approaches for calculating shortest-paths. Path-Vector

Protocols (PVP) use an interesting approach that combines the informa-

tion passing and decision processes, and it is this approach that we shall

generalise in STRIP.

PVPs are sometimes called “routing by rumour”. In a PVP, each router

shares its routing table entries by announcing them to its immediate neigh-

bours. Thus the neighbours learn of potential destinations, and potential

paths towards these destinations. The advertised information in the table

includes the path (and in the case of BGP it contains other metrics), and

these can be used to discriminate between potential choices when a router

learns of more than one path.

In BGP, the best-path decision is made based on multiple metrics; how-

ever, here we will concentrate on shortest-paths, thereby avoiding some of the

intractable problems of BGP convergence [68,138]. Nonetheless, it should be

clear that the approach we propose generalises to allow for multiple metrics

composed as lexicographic products [115].

In our protocols we allow each link in the network to be assigned a

weight, and the weight of a path is the sum of its constituent link weights.

The selection criterion then is to select the path with the lowest weight (the

shortest path).

The announcements of a typical PVP contain the destination, the weight

of the announced path to the destination, and a list of routers contained in

the path. Thus selecting a path is just a matter of comparing the new path

weight with the existing one, and loops can be detected (and eliminated) if

the receiving router is already present in the list of routers.
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Clearly, such announcements leak information about the configuration of

the network. As many of these are sent, and received, they can be used to

create a combined picture of the network and its policies [105]. In contrast,

the proposed STRIP protocol keeps this information secret.

However, there is still a minimal amount of information that must be

public. We assume that routers know their neighbours (this is reasonable

as establishing a link requires co-operation). We also assume that a router

knows (or determines) the link weight of the directed edges from it, to its

neighbours (the weights don’t need to be symmetric, and the routers don’t

need to know the distances of the links towards them). In practice though,

weights might be determined cooperatively, so as to be symmetric. Finally,

we assume that all links in the network are bidirectional, because messages

must be able to travel in both directions along a path to enable the shortest

path computation in our protocol.

5.3.1 Route propagation

We make two major modifications to a typical PVP. The first is that we

alter the information routers transmit from their routing tables. They still

transmit potential destinations, but these announcements are now simply a

list of destinations without any information about the path. A router will

then learn of alternative next-hop routers towards a destination.

The second major difference is that the router does not itself decide

between these alternatives. In order to decide between them, it starts a

shortest path computation (SPC), in which the destination router is asked

to make the decision (described in more detail in Section 5.3.2).

Although we modify the PVP significantly, we want to stress that we

did not change the underlying mechanism for route propagation: all known

routes to a destination are assessed, and the shortest is selected and an-

nounced to the neighbours. Hence, its convergence properties are almost

identical to those of conventional PVPs.
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A schematic overview of the operation of STRIP is given in Figure 5.3.1.

It shows the process: router C receives announcements of the destination D

from A and B; C sends a shortest-path computation request to D via the two

alternative paths; D makes the computation, and responds to C with the

best path; and then (as in all PVPs) C would announce its new destination

to its neighbours, who might then commence their own computation.

It may seem, superficially, that D needs to know about C before it can

return the message; but we will explain in Section 5.3.2 how to avoid this

problem. As such, although the process involves more message passing, it

is logically identical to the standard PVPs, which are known to converge

correctly for shortest paths (given non-negative weights).

5.3.2 Shortest Path Computation (SPC):

The main change to the PVP is the way shortest paths are selected. In

STRIP, a router starts a SPC: a distributed computation involving the

routers on the known paths to the destination. The idea is that the originat-

ing router sends a “probe” message to the destination along all paths known

to it. The intermediate routers add the path weight for the respective links

to the messages; and lastly, the destination router, after receiving all probes,

decides on the shortest path and sends a reply back to the originating router.

We could easily do this with all messages in the clear, resulting in a mod-

ified PVP. This would have advantages in itself. For instance, the response

proves that the path is valid: this is not at all guaranteed by the current

version of BGP (hence the need for BGPsec).

However, we make the additional change that the weight-sum is com-

puted using homomorphic encryption, as described in Section 5.2.1, and we

anonymise so that D learns little from its role in the computation.

In detail: the originator of the SPC sends an SPC-request to all neigh-

bouring routers that have announced a route to the destination. An SPC-

request contains:
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(a) Each node that

knows of a route to a

destination advertises

it to its neighbours. In

this example A and B

announce the existence

of a path to D to router

C.

(b) C starts a shortest-

path computation by

sending requests to the

announcing routers A

and B, who forward the

request on their known

routes to the destination

D. Along the path each

involved router adds the

distance to the next hop

to the path’s distance

stored in the request.

(c) After receiving all

requests for this SPC, D

determines the shortest

path, and then sends

replies to C along the

reverse paths. C then

updates its forwarding

table and sends an

announcement of the

newly learned route

to D (in green) to its

neighbours.

Figure 5.3.1: Operation of STRIP. The dark lines show the pre-existing

paths (though note that each router only knows its next hop).
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• The address of the destination.

• A random computation ID, unique to each SPC.

• A random path ID, unique to each path in the computation.

• A distance field, holding the encrypted sum of the weights of the links

of the path.

• A random “originator” encryption key for a symmetric encryption

scheme, encrypted with the destination router’s public key.

• A timestamp, holding the creation time of the request.

• The distance of the current shortest path to the destination known to

the originator, encrypted with the destination router’s public key.

Note that only the destination router can decrypt the message details.

No one else can learn anything about the distance, and although D learns

a set of distances, it does not know the origin, since the random path and

computation IDs and the random key are anonymised.

If an intermediate router receives a SPC request, it looks up the next hop

to the destination in its routing table (it must have one for this to be a valid

path), and adds the distance for that link to the encrypted distance field. It

then stores the last hop, path ID and computation ID in a temporary routing

table, and sends the request to the next hop. The temporary routing tables

serve the purpose of enabling the network to route the responses back on

the same path as the corresponding request, without revealing the identity

of the originator. This is the reason why the protocol requires bidirectional

links. Otherwise a response might never reach its destination.

If the destination router receives a SPC request, it waits a certain period

of time (the waitForRequests time) for other requests of the same com-

putation to arrive. Any requests with the same computation ID after the

timeout has expired are ignored. It then decrypts all distances, chooses the
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smallest one and prepares the response messages. A response is generated

for every request it has received. The response contains the path ID, compu-

tation ID, and the ID of the path with the shortest weight, encrypted with

the random key sent by the originator.

5.3.3 Avoiding redundant announcements

The above protocol would work – although for the protocol to converge to

the optimal solution, a router has to announce every route change. Every an-

nouncement triggers a potentially expensive computation, so we seek to omit

unnecessary announcements. In particular, we want to avoid re-announcing

a route if it has not ostensibly changed.

That said, how does a router know if a route it is using has really

changed? Presuming the router has received new announcements itself, and

undertaken a new SPC, it could make one of two decisions:

1. change the next hop – in which case it is perfectly obvious that a route

change has occurred and that it should re-advertise; or

2. keep the next hop the same.

In the latter case, we must remember that the router has only local infor-

mation, so it is not clear whether:

1. the new route is the same; or

2. the next hop is the same, but the route is different at some downstream

point.

In the second case, we must re-advertise, because distances may have changed,

and this may affect the decisions of other routers (even if the local next hop

is the same). In the first case, we can omit re-announcing, and thus avoid

overhead.

To enable a router to detect a route change in the second case, we have to

extend the protocol – such that the destination router not only returns the
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shortest path ID, but also the encrypted distance of this path. Now if the

originator starts a new SPC for that destination, he adds the old distance

to the request. The destination router can then compare the new distance

with the old distance, and adds the result of the comparison to the response.

The full response contains:

• The computation ID.

• The path ID.

• The path ID of the shortest path, encrypted with the encryption key

sent by the originator.

• The distance of the shortest path, encrypted with the public key of

the destination router.

• The “same distance” flag: a Boolean flag showing if the distance of

the old and the new shortest route are identical, encrypted with the

encryption key sent by the originator.

If the originator of the SPC receives a reply to its computation request,

it decrypts the shortest path ID and the same distance flag. It will only

update its routing table if it receives a reply for this computation through

the path of the new shortest path, and then announce the update to its

neighbours if either the new next hop is different to the old one, or if they

are the same but the “same distance” flag is not set.

Note that, we only need to pass a “same distance” flag. We don’t need

a “same path” flag because the change is only important if it affects down-

stream decisions, and this will only be the case if the distance has changed.

5.3.4 Timeouts

For every SPC there has to be temporary routing information stored at

routers. In order to reduce memory overhead, we need a mechanism to

decide when it is safe to delete this information.
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Also, since announcements for the same destination often arrive in close

succession, we introduce a waiting period for the originator to start the SPC

after receiving an announcement. This reduces the number of SPCs (at the

cost of potentially delaying convergence).

In addition there is the time the destination waits for queries before

computing shortest paths. In all there are three timers required:

1. waitForAnnouncementsTime: the time a router delays between receiv-

ing an announcement for a destination, and commencing the SPC.

2. waitForRequestsTime: the time that a destination waits from receiv-

ing a SPC request, before beginning a SPC response.

3. waitForRepliesTime: the time that information is kept in temporary

storage for reverse-path lookups, in particular, the time the originating

router waits for replies after creating an SPC request.

Figure 5.3.2 shows the timeline of these different timeouts. We discuss

the choice of these parameters in Section 5.4.

waitForAnnouncements! waitForRequests!

announcement !

received!

generate!

requests!

generate!

replies!

waitForReplies!

time!

Figure 5.3.2: Timeline of waitTime timers.

Without timeouts STRIP behaves essentially like a distributed asyn-

chronous Bellman-Ford algorithm, so the same argument for convergence

applies (see [13, Chapter 5.2.4]). With the introduction of timeouts, conver-

gence behaviour is not especially clear. For instance, if waitForRequestsTime

or waitForRepliesTime are chosen too low, then no path with minimum

transmission delay greater than those timeouts will ever be discovered. Trans-

mission times for messages depend on processing, queuing and transmission
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delays at in-between routers (which are all variable in nature), and we might

envisage situations where this leads to long-term oscillation. However, most

realised protocols have such timers, and standard practices (such as includ-

ing jitter in timers) have generally been accepted as approaches to mitigate

such problems, and accordingly, we use these here. In our experiments (de-

tailed later) we saw no problems with long term oscillation, and we examine

the correct choice of timers to avoid incorrect convergence problems.

5.3.5 Implicit Loop Detection

Since a SPC request only leads to a new routing table entry if the request

travelled to the destination and back along the new shortest route, this entry

must be loop free.

5.3.6 Privacy

The protocol has privacy-preserving properties in the honest-but-curious se-

curity model, i.e., if the parties correctly follow the protocol, there is no

efficient, single adversary that can extract more information from the tran-

script of the protocol execution than is revealed by that party’s private input

and the results.

Topology information From any shortest path computation an origi-

nating router will only learn the next hop to the destination. But that is

information it already knows, i.e., its neighbouring routers.

The destination router involved in the shortest path computation can

also not learn any new information about the topology of the network, since

the path information (the path, and the computation ID) is distributively

stored in the memory of the routers of the path. Without collusion, this

information is not obtainable. Also the origin ID is not revealed, as other-

wise the destination router would know where the request came from, and
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together with the different path lengths it could infer information about the

networks topology.

Distance information No intermediate router in a shortest path com-

putation can gain distance information, since this information is encrypted

with the destination router’s public key. Only the destination router is able

to decrypt. Therefore the security is based on the security of the homo-

morphic encryption system. And although the destination router learns the

distances of all paths, it cannot link this information to any router in the

paths, since the only information about the paths it learns is simply the

last hop. Note that all information about the originator of the request is

anonymised.

5.3.7 Authentication

Our protocol provides destination authentication – that is, the originator of

a request can be assured that the response was created by the destination

router, and no one else.

For every shortest path computation the originator creates a random

symmetric key Ks. It then encrypts Ks with the public key pkD of the

destination D and adds it to the request. Only D, the holder of the private

key corresponding to pkD, can learn Ks. But since Ks is necessary to create

a valid reply, it could have only been the destination creating the reply. As

such, the originator can be assured that the reply is fresh and not a replay,

because every SPC has a new key Ks.

5.3.8 Possible attacks outside the security model

The privacy properties of STRIP only hold in the non-collusion honest-but-

curious security model. It assumes that participants follow the protocol,

though they may seek to learn additional information.
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This is a reasonable assumption for a routing protocol – routing requires

protocols to be followed correctly at some level, or it cannot reasonably be

expected to work at all. That said, we do not want to conceal weaknesses

of the protocol against more powerful attackers.

If we allow parties to deviate from the protocol, or to collude with other

parties, they might mount the following attacks.

Sabotage Routers can sabotage the protocol in a number of ways. They

can drop random packets (either control packets to sabotage computations,

or data packets after the fact). They can use invalid input weights to ma-

nipulate the results. They can also perform a Denial of Service (DoS) at-

tack. Since every announcement triggers a rather expensive shortest path

computation, flooding the network with announcements potentially leads to

overload.

The emphasis in our protocol is privacy, not protection from such attacks,

which are in any case possible at present with most current protocols.

Attacks to gain information There are several ways in which a partici-

pant in the protocol might actively attempt to elicit additional information.

Firstly, an originating router O can request multiple route computations

with different subsets of its peers. The result is the next hop for each subset

of peers, and from this O can deduce the order of the routes. A partial ver-

sion of this may happen during route convergence, and so partial orderings

are one form of leakage in this protocol, when performed multiple times. A

more serious form of this attack involves O performing many such calcula-

tions and deliberately corrupting its component of the calculation by adding

values to partial metrics it learns. This could potentially allow O to learn

the actual distance metrics if performed enough times. However, for a met-

ric with a reasonable range, this attack requires many computations and is

unlikely to be accomplished unnoticed.
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Secondly, multiple routers could collude to obtain more information. For

instance, both the destination router, and other routers along a path sharing

a common neighbour, can compute its distance value by decrypting the

partial sum of the distances and taking the difference.

Finally, once routes are established, traffic will follow. An observer of

traffic may be able to learn a great deal about the routes in a network (e.g.,

see [36, 124]). Furthermore, by changing its own weights, and observing

traffic flows, a node may be able to learn a substantial amount. These type

of attacks are unavoidable as long as the traffic paths are not hidden from

the nodes, but there do exist anonymous forwarding schemes (e.g. [47]) that

allow one to disguise sources/destinations and routes through a network. If

such a scheme were designed for use on top of privacy-preserving routing,

then we may be able to avoid this last type of information gathering attack,

though typically at the expense of some loss of efficiency.

5.4 Evaluation

Cryptographic protocols usually create overheads, and in the case of STRIP

there are messages passed above and beyond those of a typical PVP. Our

first goal, therefore, is to determine the overheads of STRIP.

We can see two types of overhead: the additional messages passed (and

the additional length of these messages in comparison to those of a PVP

protocol), and the cost in terms of extra time to converge. There is an

additional computational cost to the protocol, but we will account for that

through the calculation of additional delays.

We assess the protocol through two means: simulation and implementa-

tion. The simulation is necessary because we do not have the resources to

assess the performance of the real implementation in distributed hardware;

as such, the simulation is used to show scaling of the protocol, and used for

setting features (such as timers) that require many experiments. However,
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the final proof of the pudding lies in the implementation.

We first discuss the simulation results. We wrote a discrete-event sim-

ulation of STRIP focusing on the processing capabilities of the routers in

the network. We implemented the simulation using Python, and in partic-

ular the SimPy [1] package, a framework for implementing a process-based

discrete-event simulation.

The routers are modelled to have a processing queue, unlimited in size,

where the SPC-packets are processed sequentially, in the order of their arrival

(FIFO). Each router can have one, or several, of these processing queues.

The STRIP protocol routers were configured with the following param-

eters:

• requestTime: the time a router needs to process a SPC request. This

is dominated by the encryption. We set this value on all simulations

to 4ms, the time for our Paillier encryption on a fairly standard CPU.

• replyTime: the time a router needs to process a SPC reply. That’s

just a lookup in the temporary routing table. We set replyTime to 0.1

ms.

We implemented the waitForAnnouncementsTime (wfat) as a random vari-

able X with a uniform distribution and 1/2 wfat ≤ X ≤ 3/2 wfat. If the

waiting time is fixed it can lead to bursts of almost simultaneous shortest

path computations which create load bursts on the routers. With the ran-

domisation we achieve a more equal load on the routers, and avoid potential

synchronisation effects.

We also implemented a simulation of the path vector protocol described

in 5.3. For a fair comparison, the protocol includes an announcementDelay

parameter similar to the waitForAnnouncementsTime in STRIP (routing

protocols often have such a parameter, for instance the minRouteAdvertTimer

in BGP). When a router learns a new route, it waits for announcementDelay

before announcing the changes to its neighbours. The purpose is to prevent
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load spurts, and it is randomised in the same way as the equivalent param-

eter of the STRIP protocol.

We test the protocols on several different networks whose topologies are

described below. Every link between routers has a transmission delay of

5+x ms, with x being sampled from an exponential distribution with mean

1. In each case, the routers are started at the same time, and start by

announcing their immediate neighbours. This is the most stressful test of

the performance of the algorithm.

For every configuration, we ran the simulation 50 times with different

seeds for the random number generator – the reported figures are the aver-

ages over these simulations.

5.4.1 Comparison

The added privacy measures of STRIP introduce overhead compared with

the PVP. Figure 5.4.3 shows the convergence time of STRIP vs. the path vec-

tor protocol in an Erdös-Rényi graph with p = 10% and respective number

of nodes, and a Barabási-Albert graph with 2 new edges for each node.

We observe that the convergence times increase due to the additional

message passing delays, but that the increase is approximately 20% on av-

erage over all the cases. If the computational times of the encryptions were

reduced, then these overheads could be substantially reduced.

We are not suggesting that either type of network is realistic, but they

do test opposite extremes. The former is a relatively regular network, while

the latter has power-law degree, and this creates a small number of high-

degree hub nodes. We can see in the results that both protocols converge

more quickly on the Barabási-Albert graphs, due to the smaller search space

(routes concentrate on the few hub nodes).

There is a more significant difference in the communication costs of the

two protocols. Figure 5.4.4 shows the number of messages sent until conver-

gence for the same graphs as in Figure 5.4.3. The number of announcements
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Figure 5.4.3: Comparison of the convergence time between STRIP and PVP

for Erdös-Rényi and Barabási-Albert graphs.

made by both protocols are similar, but the SPC in STRIP introduces addi-

tional messages. The sizes of these messages are dominated by the cypher-

texts; a request contains two, and a reply contains one cypher-text. With

Paillier’s encryption scheme (with a key size of 1024 bits), the cypher-text

are 2048 bits in length. Thus requests are around 512 bytes, and replies are

around 256 bytes. The extra, larger messages introduce a communications

overhead, but it is still manageable simply because todays networks have

an exponentially larger available bandwidth than those for which a typical

PVP was designed (20 years or more ago).

However, the number of requests and replies grow significantly faster

than the number of announcements for bigger graphs, since there are more

paths to be evaluated and the average path length grows.
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Figure 5.4.4: The number of messages sent until convergence in the Erdös-

Rényi graph from Figure 5.4.3.

5.4.2 Parameter Choice

STRIP has three parameters that need to be configured:

waitForAnnouncementsTime,

waitForRequestsTime, and

waitForRepliesTime.

Their chronological sequence is shown in Figure 5.3.2.

The value for waitForRequestsTime depends on how long a request

travels from the originator to the destination through the network. Too

small, and requests are dropped; but large values slow down convergence.

Figure 5.4.5 shows convergence time and deviation from the optimal routing

solution for different values for waitForRequestsTime in an Erdös-Rényi

graph with 30 nodes and p = 15%.

Figure 5.4.5 shows that the convergence times (left axis) generally in-

crease with an increase in the waitForRequestsTime parameter. This effect
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can be dampened by an implementation trick we call shortcut. The origina-

tor knows how many requests it has created and therefore, after receiving a

reply for every request it sent, it does not have to wait any longer because

there cannot be any more replies. Sending the number of requests in each

request to the destination router means it can stop waiting after it receives

all the requests. Figure 5.4.5 shows convergence times with and without

shortcut.

Figure 5.4.5 also shows the “deviation” (right axis) from the correct

routing solution, which can be non-zero if too many routing messages are

dropped. The figure shows that there is a minimum value for this parameter,

above which the routes converge correctly. In all our simulations we found

that choosing waitForRequestsTime to be n(c+ td), where n is the number

of nodes in the graph, c the time it takes to compute an encryption and td

the average transmission delay on a link, results in an optimal solution being

found. This was a reasonable compromise between additional convergence

time, and finding the optimal solution.

The value for waitForRepliesTime depends on the sum of the value

for waitForRequestsTime and the times it takes for the replies to travel

back to the originator. We choose waitForRepliesTime to be twice the

waitForRequestsTime.

The waitForAnnouncementsTime parameter also has a dramatic influ-

ence on the convergence time. Choosing this to be too small leads to STRIP

not finding the optimal solution. If it is too small, the routers receive too

many requests to process – so queues may build up and at some point the

number of requests may exceed the processing capabilities of the router lead-

ing to dropped requests. In contrast, larger values slow convergence. Figure

5.4.6 shows the convergence time of STRIP in an Erdös-Rényi graph with

30 nodes and p = 15%. The effect of the deviation from the optimal solu-

tion can be dampened by allowing routers to process requests in parallel (in

this measurement series we assigned a router one processing unit for every 4
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Figure 5.4.5: Convergence time and deviation from optimal routing solution

for different values for waitForRequestsTime.

ports). The resulting convergence times are almost linear in the delay time.

5.4.3 Performance

The performance of the protocol, with regards to the smallest time to con-

verge to the optimal routing solution, depends on the number of messages;

this is because processing the cryptography in the messages represents the

bottleneck. If the processing queue of a router fills faster than it can process

the messages, it increases the overall round-trip time for a shortest path

computation; in extreme cases, messages may even be dropped.

Obviously, the more routers in the network, the more messages that have

to be processed, but the number of links in a network also has an influence

on the number of messages sent. Figure 5.4.7 shows the number of messages

in an Erdös-Rényi graph with 30 nodes with varying average node degree.

The increase of edges in the graph increases the number of possible paths
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Figure 5.4.6: Comparing convergence time and deviation from optimal rout-

ing solution for different values for waitForAnnouncementsTime for single

and multi processing unit (PU) routers. In the multi processing case a router

gets assigned one processing unit for every 4 ports.

between nodes, which consequently requires that more paths have to be

explored in each computation.

The overall amount of load for the routers is not the only determining

factor for the protocol performance. It also depends on how this load is

distributed over all routers. Figure 5.4.8 show the deviation from the optimal

routing solution for an Erdös-Rényi graph with 30 nodes with an average

node degree of 3 but different maximal node degrees. It shows that the nodes

with high node degree are the bottleneck for performance of the protocol;

this is because a higher node degree means being part of more paths, and

therefore having to participate in more shortest-path computations.
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Figure 5.4.7: The number of messages for graphs with n = 30 but different

average node degree.
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5.5 Implementation

We implemented the protocol using the Python programming language. We

chose Python because of its suitability for rapid prototyping and its vast

collection of libraries. The core of STRIP is twisted [2], an event-driven

networking engine. It abstracts the underlying complexity of networking by

providing a suitable set of primitives. It enabled us to implement STRIP in

just 680 lines of code.

For example, setting up a TCP server listening for connections from other

routers is achieved using just one line of code:

s t r i p s e r v i c e = i n t e r n e t . TCPServer (

c on f i g . g e t i n t ( ’ s erver ’ , ’ port ’ ) ,

STRIPServerFactory( r ou te r ) )

Figure 5.5.9: Initialisation of a TCP server to listen for connections from

other routers

The STRIPServerFactory, thus created, in turn creates a STRIPServer

object for each connection. Processing messages simply requires overwriting

of the stringReceived method.

c l a s s STRIPServer ( Net s t r ingRece ive r ) :

de f s t r ingRece ived ( s e l f , data ) :

. . .

Figure 5.5.10: Definition of the STRIPServer class. Overwriting stringRe-

ceived enables message processing.

For the homomorphic encryption we chose Paillier’s encryption scheme

[114]. We based our implementation on the work of [51], but we used a

wrapper module to be able to use the very efficient GNU multiple precision

arithmetic library to speed up computations dramatically. We also improved
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the performance of decryption by applying the Chinese Remainder Theorem

(CRT). The computationally expensive part of the decryption is a modular

exponentiation with a large exponent. The CRT enables us to divide the

exponentiation into two exponentiations with much smaller exponents. The

new exponents have just half the bit size of the original one. This method

leads to an improvement of approximately a factor of 4.

The source code is available for download at

https://github.com/wilko77/STRIP.

5.5.1 Emulation

We emulated routers using AutoNetkit [86], which creates a netkit [120] lab.

Netkit is an environment for performing network experiments with several

virtual network devices that can be interconnected to form a network on a

single PC. Given the network topology description in graphML format, it

automatically generates the netkit configuration files to set up the virtual

routers and the connections. We modified AutoNetkit to also generate the

STRIP configuration files.

It is important to realise, though, that this is a real protocol stack,

running on real router software (on virtualised router hardware). As such,

our emulation experiments can demonstrate success of the protocol, and

overhead in terms of messages – but convergence times for such a network

are inaccurate, hence the need for the earlier simulations.

We used the following networks for the emulation runs. All networks

consist of 11 nodes.

• Random tree. It has the smallest possible number of edges for a con-

nected graph. We choose the weights of the edges uniformly at random

between 1 and 10.

• Clique. Fully connected, thus maximum number of edges for a graph.

Again, randomly chosen weights on the edges.

https://github.com/wilko77/STRIP
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• The Abilene network. Weights on the edges are the distance of the

edge in km.

Netkit starts the virtual routers in a sequential order, and only after the

first one is fully running does it start the next one. We run an emulation

until the routing converges, and then test the result for correctness. Table

5.5.1 shows the number of sent messages for the different networks.

network #encryptions #announcements #other msgs

tree 512 91 584

fully connected 14,477 2,069 26,570

Abilene 1,286 192 1,954

Table 5.5.1: Comparison of the number of messages until convergence.

As seen with the simulations, the density of a network is a determining

factor for the communication and computation costs. The difference between

the best case (tree) and worst case (clique) for the same size network is

significant. However, real world networks are rather sparse, as every link

introduces more costs and does not necessarily result in better performance.

5.6 Conclusion

This chapter presented STRIP, a shortest-path routing protocol, which does

not reveal the length of paths to its participants. It opens up a set of oper-

ations that could enhance privacy (and hence security) in future protocols.

The protocol has limitations: it introduces overheads, and doesn’t im-

plement all of the features that one might like to see in a modern, BGP-like

protocol. However, the basic components of the protocol are easily extensi-

ble; indeed, the homomorphic encryption can implement other types of path

metrics, or combinations of them.
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In the next chapter we apply SMC techniques to fraud detection in

telecommunication networks.
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Chapter 6

Privacy-Preserving Fraud

Detection Across Multiple

Phone Record Databases

After looking at a network management problem in computer networks in

the previous chapter, we now focus on a somewhat different problem in

telecommunication networks.

Subscription fraud, i.e., customers signing up to a service with no intent

to pay, causes significant losses in the telecommunication industry. Telecom

operators have developed strategies to identify those fraudsters, but fraud-

sters tend to migrate from one carrier to another. Data sharing between

telecom operators would increase fraud detection rates, but phone records

are protected by law and operators might be reluctant to share information

about fraudsters because they see it as giving a competitive advantage.

We propose several protocols based on different SMC techniques to en-

able fraud detection across multiple databases without revealing additional

information. We also propose a model to generate phone records, with which

we evaluate how the choice of parameters affects detection performance. We

show feasibility and a comparison of performance and costs with implemen-

tations of our protocols.

111



112 CHAPTER 6. PRIVACY-PRESERVING FRAUD DETECTION

6.1 Introduction

Fraud – the deliberate practice of deception in order to secure unfair or

unlawful gain – is as old as humanity itself and is quick to adapt to new

technologies.

Experts estimate the losses in the telecommunication industry due to

fraud for 2013 at 46.3 billion US dollar, approximately 2% of the global

telecom revenue [32].

Fraud in the telecommunication industry comes in many different forms

with subscription fraud being the biggest concern for telecom operators [121].

The characteristics of subscription fraud are that someone signs up for a

new service (e.g., a new phone, extra lines, . . . ) with no intent to pay. All

calls over this line are therefore fraudulent but consistent with the profile

of the user, though fraudsters often hide behind false identities to hamper

fraud detection efforts.

To combat fraud, and minimise losses, telecommunication companies use

different fraud detection techniques, with the aim to identify fraud as quickly

as possible.

However, the phone record databases are huge and complex, and they

contain only a relatively small number of fraudulent entries, which makes

the extraction of the relevant information for fraud detection challenging.

Several techniques for fraud detection have been proposed in recent years.

Bolton and Hand [21] took a statistical approach, Phua et al. [117] showed

an overview of data-mining based techniques, and Becker et al. [9] proposed

a graph-based solution. We extend their approach as it has proven to be

useful in supporting the fraud investigators at AT&T.

All three fraud detection techniques have in common that they only

consider data from one source. But the telecommunication market is het-

erogeneous, e.g., in the U.S market no company had a share greater than

35% of carrier subscriptions in 2013 [37]. Fraudsters might migrate from one
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carrier to another, once their initial fraud is detected. How can the other

carrier identify this fraudster with no prior data? After all, they look and

behave just like new customers.

Obviously, the chances of detecting fraud would increase if the telecom-

munication companies shared their information about fraudsters. However,

phone data is protected by law and information about fraudsters might be

seen as providing a competitive advantage, so at present this data is not

shared anywhere, to the best of our knowledge.

We present a solution to detect subscription fraud that allows sharing

fraudster information without revealing any information from the databases

other than fraud matches.

Our contributions are:

• Real phone records are protected by law. So we propose a model to

generate synthetic phone records with nontrivial relationships.

• We investigate how the choice of matching criteria and classifier affects

the detection performance of the graph-based fraud detection approach

by Becker et al. [9].

• We extend the graph-based fraud detection approach of [9] with two

different secure multiparty computation techniques to construct privacy-

preserving fraud detection protocols for multiple parties.

• We implement the protocols and compare their communication and

computation costs.

6.2 Background

There are many different forms of fraud in the telecommunication industry.

Examples of common varieties of fraud, as described in [9], are as follows:



114 CHAPTER 6. PRIVACY-PRESERVING FRAUD DETECTION

• Subscription fraud. Someone signs up for a new service (e.g., a new

phone or extra lines) with no intent to pay. All calls over this line are

fraudulent but consistent with the profile of the user.

• Intrusion fraud. An existing, otherwise legitimate account is compro-

mised in some way by an intruder, who subsequently makes calls on

this account. In contrast to subscription fraud, the legitimate calls are

interspersed with fraudulent ones.

• Fraud based on loopholes in technology. Technology used in conjunc-

tion with the service can have vulnerabilities. Consider voice mail

systems as an example. Some can be configured to allow calls to be

made out of the system. If fraudsters are able to exploit a vulnerability

they may then use it to make outgoing calls.

• Social engineering. Psychological manipulation of people into perform-

ing actions or disclosing information to gain access to a customer’s

account. In 2006 this method was used to gain access to the private

phone records of the board members of HP [15].

• Fraud based on new technology. New technology, such as the Voice over

Internet Protocol (VoIP), enables telephony at very low cost. Fraud-

sters realised that they could purchase the service at a low price and

then resell it illegally at a higher price to consumers.

• Fraud based on new regulation. New regulations can have unintended

loopholes which allow fraudsters to exploit these regulations to their

advantage. See for example the payphone compensation rules from

1996 [53].

• Masquerading as another user. For instance, stolen credit card num-

bers can be used to place calls masquerading as the card holder.



6.2. BACKGROUND 115

Privacy-preserving computation has been applied to fraud detection tech-

niques before. Vaidya et al. [137] proposed a privacy-preserving outlier de-

tection protocol. The aim is to detect unusual behaviour (e.g., if an intruder

compromises an account and starts to make calls on this account the call-

ing patterns changes unexpectedly.) Our fraud scenario is different, as we

want to be able to detect the same calling pattern in different accounts.

Grosskreuz et al. [69] proposed a secure protocol for top-k subgroup dis-

covery on horizontally partitioned data. It finds patterns in the union of

databases, and the quality of every subgroup depends on all databases. In

our setting the databases are independent and the quality of the match only

depends on the corresponding database.

In this work we focus on subscription fraud, as it alone amounted to a

loss of 5.22 billion US dollars in the telecommunication industry in 2013

[32]. The challenge in detecting subscription fraud is that without prior

data, it is hard to distinguish between legitimate customers and fraudsters,

since the only difference is that fraudsters have no intent to pay for the

service. Furthermore, because fraudsters tend to hide behind false identities,

a database with identities that showed fraudulent behaviour in the past is

not likely to be very effective for fraud detection.

However, although fraudsters might change their identity, their calling

pattern (the numbers they call, frequency and length of calls) often stays

the same, since this pattern is defined by their social network.

Hence, a more promising strategy to identify fraudsters is to look at their

usage signature rather than looking at their claimed identity. Becker et al. [9]

did exactly this by computing so called Communities of Interest (COI) sig-

natures of the phone usage of subscribers. They contain the top-k commu-

nication partners of a subscriber. The idea behind this is that signatures

are different for different individuals but fairly stable over time. This can

be explained by people having individual social networks and large changes

in these are rare. Knowing COI signatures of fraudsters helps telecommuni-
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cation companies to identify fraudulent new subscribers by matching their

COI signature to those in the fraudster database, as shown for real phone

data at AT&T in [9].

6.2.1 Communities of Interest

If we look at phone records as a graph, in which nodes are phone numbers

and directed edges represent communication between those numbers, then

we can see that, although the total number of nodes in the graphs might

be in the millions with billions of edges, the number of direct neighbours

of an individual node is usually only a few. To create a signature of an

individual’s calling behaviour we use a framework called the Community of

Interest (COI) signature [38]. This signature consists of the top-k numbers

called by the target number and the top-k numbers that call the target

number.

Although ideally the COI signatures would be stable we also have to allow

for changes in the call-graph network such as changes in phone numbers, or

in the social network of an individual. The COI framework accounts for this

by computing a moving average over the call-graph network over time.

The call-graph network can be represented as a weighted, directed graph

G, with nodes representing the phone numbers and edges that represent calls

between two nodes (denoted by N(G) and E(G)). Each edge e ∈ E(G) is

assigned a weight wG(e) that describes the aggregation of the transactions

between the two nodes. This can be the number of calls between the nodes,

the sum of the durations of the calls, or other call-based properties. We use

number of calls as edge weights, as our simulation does not generate other

call properties.

To describe the historical behaviour of the graph, we first have to define

a graph operator ⊕ that computes the weighted sum of two graphs A and

B, such that if G = αA⊕ βB then the nodes and edges of the new graph G
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are the union of the nodes and edges of the graphs A and B,

N(G) = N(A) ∪N(B),

E(G) = E(A) ∪ E(B),

and the weight of the edges of the new graph are computed as

wG(e) = αwA(e) + βwB(e), for all e ∈ E(G),

where

wA(e) = 0, for all e /∈ E(A), and

wB(e) = 0, for all e /∈ E(B).

We use a discrete time representation, that is, the time is divided into

equidistant time intervals. Let gt be the graph corresponding to the trans-

actions during the finite time interval t, and Gt be the graph representing all

transactions up to and including t, then Ĝt is called the top-k approximation

of Gt which is defined by

Ĝt = top-k{θgt ⊕ (1− θ)Ĝt−1},

where “top-k” is a pruning function that includes the k edges of each node

with the highest weights. Everything not included in the top-k edges gets

aggregated into an overflow bin called other.

The pruning function ensures that only the most relevant nodes will

appear in the COI signature. But since calling behaviour is heavily skewed

such that most of an individual’s calls are made to only a few numbers, we

can choose the parameter θ and k of the COI framework such that typically

95% of all communication behaviour is accounted for in the top-k edges.

For a thorough discussion of the choice of parameters, see [72]. Pruning also

reduces the size of the data we need to track to k entries per subscriber.

These COI signatures are used to detect subscription fraud in the follow-

ing way. The signatures of known fraudsters are stored in a database, and
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after some time T a new customer’s signature is compared to the database.

The idea behind this approach is that if a fraudster signs up to a new line

they will most likely have a very similar signature to their past one.

The comparison of two signatures is a two-stage process. We have to

define a measure of closeness, which we call matching criteria. We discuss

different choices in Section 6.4.1. Furthermore we need a classifier to decide

if two signatures are “close enough” to be considered to have originated from

the same individual. Section 6.4.2 discusses different classifiers.

We consider different matching criteria/classifier pairs because different

pairs suit different types of secure multiparty computation.

6.2.2 Secure Multiparty Computation

Again, we use secure multiparty techniques to secure the privacy of the

parties’ inputs. The protocols we propose in this chapter are either based

on two-party secure function evaluation, which we describe in Section 2.3.6,

or based on the private set intersection protocol described in the next section

which uses homomorphic encryption. We describe homomorphic encryption

in Section 2.2.

Private Set Intersection (Freedman et al. [57])

This is a two-party protocol between a client C and a server S. Each holds

a set of inputs drawn from the same domain. At the conclusion of the

protocol, C learns which elements of the sets are shared by both C and

S. But neither party learns any element of the opposite party’s set that is

not an element of the intersection. Freedman et al. [57] present different

versions of the protocol which are secure against semi-honest or malicious

adversaries. We implement the semi-honest case and leave the malicious

case to the interested reader.

A semi-honest adversary is a participant in the protocol that correctly

follows the protocol but tries to gain more information about the other
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party’s input than can be inferred by its own private input and the output

of the protocol. A protocol is secure in the semi-honest model if there is no

efficient semi-honest adversary, i.e., an adversary that runs in polynomial

time.

A detailed description of the protocol is shown in Protocol 1. The un-

derlying idea of this Private Set Intersection protocol is that C defines a

polynomial P whose roots are the inputs (x1, . . . , xk), i.e.,

P (y) = (x1 − y)(x2 − y) . . . (xk − y) =

k
∑

u=0

αuy
u.

C sends the homomorphically encrypted coefficients of the polynomial to S.

Then S can use the homomorphic properties of the encryption system (in

this case the addition of two encrypted values and the multiplication of a

constant with an encrypted value) to evaluate the polynomial for each of

its inputs. The key observation is that for S’s input y the polynomial will

evaluate to P (y) = 0 if and only if y is in the set of inputs of C. The server

S will use this fact to hide its inputs. For every element y of its input set it

computes Enc(r ·P (y)+ y), with r being a fresh random number. Thus, for

each element of the intersection of the two parties input sets the result of

this computation is the corresponding element, whereas for all other values

the result is random.

6.3 Test Data

Real phone records are protected by law in most countries. Therefore we

have to simulate phone records to test our ideas.

Our aim is to find a model to create phone records that has similar

characteristics to real-world data from [72, p. 15]. We aim to make the

model as simple as possible though, in order to aid interpretation of results.

In particular our model should only have parameters that have real-world

equivalents, and for which values can be obtained by publicly available data.
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INPUT: C’s input: X = {x1, . . . , xk}, S’s input: Y = {y1, . . . , yk}

1. (a) C uses interpolation to compute the coefficients of the polynomial

P (y) =
∑k

u=0 αuy
u of degree k with roots {x1, . . . , xk}.

(b) C encrypts each of the k+1 coefficients and sends the encryptions

{Enc(α0), . . . ,Enc(αk)} to S.

2. For every y ∈ Y :

(a) S uses the homomorphic properties to evaluate the encrypted

polynomial at y. That is, S computes Enc(P (y)) =

Enc(
∑k

u=0 αuy
u).

(b) S chooses a random value r and computes Enc(rP (y) + y).

S randomly permutes this set of k ciphertexts and sends them to C.

3. C decrypts all ciphertexts and outputs all x ∈ X for which there is a

corresponding decrypted value.

Protocol 1: Private Set Intersection Protocol
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The basis of our simulation is a graph representing the social network

of a telco customer. Nodes represent the phone number of a customer and

links between nodes represent the possibility for a phone call. Each edge is

assigned a probability. To create a data point for a phone record, we iterate

over all edges and generate a call between each pair of connected nodes with

its probability, independently of all other calls. And since we want to allow

more than one call between two nodes in a day, we do this iteration several

times for a phone record for one day. We describe the details below.

6.3.1 Weighted Social Network Graph

Nanavati et al. showed in [107] that the node degree of call records fits a

power law distribution. In order to achieve a power law distribution we mod-

elled the social network of the subscribers as a Barabási-Albert graph. The

graph is constructed by using a preferential attachment mechanism. Each

new node is connected to m existing nodes with a probability proportional

to the number of links of the existing nodes. Let S be the social network

graph, we then assign each edge eij ∈ E(S) between nodes i and j a weight

vij, denoting the average number of calls per day between i and j. We chose

the weights vij such that E[v] = c/nd(S), with nd(S) denoting the average

node degree in graph S, in order to be able to create phone records with an

expected average call rate per customer per day c. Given no better informa-

tion about the distribution of the individual call rates, we chose the uniform

distribution, according to Laplace’s principle of indifference. Thus, we set

the weights to vij = 2c
nd(S)

rij with rij being chosen uniformly at random

between 0 and 1.

6.3.2 Phone Records

The phone records for a time period t can be described as a transactions

graph gt. We generate gt from S such that N(gt) = N(S) and E(gt) = E(S).
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To generate the edge weights wij, denoting the number of calls between i

and j during time t, we first divide the time period t into d slots, and each

slot can either have a call or not. The probability for a call in a slot is

pij = vij/d, thus, E[no. of calls btw. i and j] = dpij = vij . The weight wij

is then set to the sum of all calls in the slots.
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Figure 6.3.1: Timeline of the creation of the daily transaction graphs gi and

the historical transaction graph approximations Ĝi

6.3.3 Validation

We generated phone records for 100 000 subscribers. We set the call rate c

to the reported call rate of the US in 2007 [48, Section 24, Table 1146] of

5.2 calls per day per subscriber.

We compare our simulated records with real AT&T data. In [72, p. 15]

Hill et al. show descriptive statistics of 1092 subscribers. The plots show

cumulative distributions for total calls and edge degree for the subscribers

over a 12 month period.

Figures 6.3.2, 6.3.3, 6.3.4 and 6.3.5 show these statistics for our data.

Although similar there are some differences. The biggest difference is within

the ultra-low usage customers. The data in [72, p. 15] starts at no phone

calls per customer per year, whereas our model does not generate such low-

usage customers. This might be explained by our data being generated under

the assumption that every customer is active every day in the year, but in

reality customers change providers and so may not be present for a part of

the interval.



6.3. TEST DATA 123

0 500 1000 1500 2000
Total Calls

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
D

F

m=15,d=7,c=5.2
m=15,d=14,c=5.2
m=15,d=28,c=5.2

Figure 6.3.2: Cumulative distribution of total calls for call data generated

with av. node degree m = 15, call rate c = 5.2 and various values for

iterations per day d. All curves overlap, so choice of d has little effect.

Figure 6.3.3: Cumulative distribution of total calls for call data generated

with m = 30, d = 7 and various values for c.

Their graph suggests that the average daily call rate per customer is

somewhere between 1 and 2. However, for our experiments we use the aver-

age daily call rate c = 5.2, the reported call rate in the US in 2007 [48, Sec.

24, Tab. 1146]. The difference might be explained by the rather small sam-
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Figure 6.3.4: Cumulative distribution of edge degree for call data generated

with m = 15, c = 5.2 and various values for d. All curves overlap, so choice

of d has very little affect.

Figure 6.3.5: Cumulative distribution of edge degree for call data generated

with d = 7 and various values for c and m

ple size of just 1092 subscribers out of the millions of AT&T customers.

For the edge degree we chose m = 30 for our experiments, as this is the

best match between Figure 6.3.5 and [72, p. 15]. The choice of d for the

daily iterations does not seem to have a significant effect on the statistics as
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Figures 6.3.2 and 6.3.4 show that the lines for different values for d overlap.

We chose d = 7 for our experiments as a compromise between computation

costs and detail.

6.3.4 COI Generation

We generated phone records for 100 days. For our experiments we need three

different COI signatures for each subscriber. A signature of the first 90 days,

representing the historical phone usage of the subscriber, a signature of day

91 and a signature of the ten days from 91 to 100. We choose the set of

parameters for the COI framework as in [39]. The decay rate for historical

data is set to θ = 0.9, the number of entries in a COI is set to k = 9, and

the pruning threshold to ǫ = 0.1.

Although Hill et al. showed in [72] that tuning those parameter to your

specific phone data might give better detection rates, we want to refrain

from doing so, because in our application scenario we have different sets of

phone records from the participating providers which most likely will have

different sets of optimal parameters.

6.4 Matching

Matching two COI signatures, that is deciding if two signatures originated

from the same subscriber, contains two components. A matching criteria

that provides a measure of how similar these two signatures are, and a

classifier that decides if we have a match.

6.4.1 Matching Criteria

Having two COIs we now need a measure of how likely it is that these

two COIs originated from the same subscriber. We compare the following

matching criteria:
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• Dice’s Coefficient: Proposed by Dice [45] to measure the amount of

ecological association between species, his coefficient measures the sim-

ilarity of two sets. Its values are bounded between 0 and 1, with 0 when

there are no similarities and 1 if the two sets are identical. Let A and

B be the sets of the phone numbers of COIa and COIb respectively.

Dice’s coefficient is defined as:

D(COIa,COIb) =
2|A ∩ B|

|A|+ |B|
.

Dice’s coefficient ignores weights, but a COI has weights assigned to it, so

we want to investigate how using the weight information affects the detection

performance.

• Weighted Dice Coefficient: Becker et al. [9] used a weighted version

of Dice’s coefficient for fraud detection. It uses normalised weights.

Let wa(o) be the weight of phone number o in COIa, and pa(o) =

wa(o)/
∑

i∈A wa(i) be the normalised weight of phone number o.

WD(COIa,COIb) =

∑

o∈A∩B pa(o) + pb(o)

1 +
∑

o∈top-k pa(o)

• Hellinger Distance: The second criterion used in [9] is based on the

Hellinger Distance [12], which was designed to measure distances be-

tween statistical distributions. It also uses normalised weights.

HD(COIa,COIb) =
∑

o∈A∩B

√

pa(o)pb(o)

This sum is also bounded by 0 and 1.

• Overlap: Cortes et al. [38] proposed a measure called Overlap, with

Overlap(COIa,COIb) =
∑

o∈A∩B

wa(o)wb(o)

wo

,

where wo is the overall weight of node o (the sum of the weights of all

edges originating in o). The denominator corrects for the popularity
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of an overlap node o, giving connections to less popular nodes more

importance. The underlying idea is that high-use nodes like telemar-

keting shops or customer service numbers contribute less information

to a unique fingerprint than low-use nodes. Again, a value of 0 stands

for no similarities between the two signatures, but there is no general

upper bound if the two are identical. Furthermore the interpretation of

a value greater than 0 is not clear, since not only the intersection, but

also the popularity of the nodes in the intersection have an influence.

6.4.2 Classifier

We want to test if a COI belongs to a fraudster. In our setting one telecom-

munication provider has a database of known fraudsters and another provider

wants to test its new customers against this database.

The classifier has to decide, given the database of known fraudsters and

the COI of a suspect, if this suspect is a fraudster or not.

We use two classifiers:

• Threshold classifier: If the value from the matching criterion of a COI

from the database and the COI of the suspect is above a threshold s,

the classifier declares the suspect as fraudster.

• Delta classifier: This classifier computes the matching scores for all

elements in the database with the suspect COI and then looks at the

difference between the highest and the second highest score. If this

difference is above a threshold s, the classifier declares the suspect as

fraudulent.

6.4.3 Comparison

We first generate phone records for 100 days and then compute the COIs

for the first 90 days, the COIs for the 91st day and the COIs for the 10 days

from day 90 to 100. We randomly divide the 90 days’ COIs in two groups:
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fraudsters and non-fraudsters. The probability of being a fraudster is 0.05

and 0.95 for the non-fraudsters, respectively. We then sample 2000 COIs

out of the 1 and the 10 day COIs for classification.

Matching Criteria

We compare the proposed metrics using a threshold classifier.

Figures 6.4.6 and 6.4.7 show the receiver operating characteristic for the

different matching criteria for the matching of a 1-day COI signature and a

10-day COI signature to the database, averaged over 200 samples.

A Receiver Operating Characteristic, or simply ROC curve, is a plot

which shows the performance of a classifier system as its threshold is varied.

It plots the fraction of true positives out of the total actual positives (true

positive probability) vs. the fraction of false positives out of the total actual

negatives (false positive probability) at various threshold settings.

The detection performance with 10-day COIs is significantly better than

the detection with 1-day COIs, which is expected, as a phone record has on

average only 5.2 entries per day. However, the performance of the Overlap

Criterion does not improve in the same way as the performances of the other

criteria. We believe that this can be explained by the fact that the Overlap

Criterion is not bounded between 0 and 1.

At least with our data, it seems that adding weight information to the

matching criteria does not improve detection performance, but Becker et al.

[9] showed that doing so achieved better results on real phone data.

Although the detection performance for 1-day signatures is not very high

we have to keep in mind that in a realistic fraud detection scenario every clas-

sified fraudster has to be verified manually by an investigator. It is therefore

essential that the false positive probability is very low to avoid unnecessary

workload for the investigation team. Moreover, subscription fraud causes

billions of dollars of losses each year, so even identifying a fraction of the

fraudsters will lead to significant savings. Extending the time period for sig-
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Figure 6.4.6: Comparison of the matching criteria for matching a 1-day COI

to a database of 90-day COIs.

Figure 6.4.7: Comparison of the matching criteria for matching a 10-day

COI to a database of 90-day COIs.

nature generation improves the detection probability significantly, after 10

days we are able to detect about half of the fraudsters with a false positives

probability of less then 0.5%.

We arbitrarily chose the probability of a subscriber being a fraudster

as 5 percent. However, changing this probability does not alter the overall
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(a) 1 percent fraudsters

(b) 5 percent fraudsters

(c) 10 percent fraudsters

Figure 6.4.8: Comparison of the detection performance for different percent-

ages of fraudsters amongst the subscribers.
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trend. Figure 6.4.8 shows the comparison of the detection performance for 1,

5 and 10 percent fraudsters. In our experiments, the detection performance

improves when fraudsters are uncommon (the most likely case).

Classifier

Figures 6.4.9 and 6.4.10 show the ROC curves of the comparison of the two

classifier using the weighted Dice coefficient matching criteria. They show

the fraction of true positives out of the total actual positives vs. the fraction

of false positives out of the total actual negatives at various values for the

classifier parameter s.

With all of our tested matching criteria the threshold classifier outper-

forms the delta classifier.

Figure 6.4.9: Comparison of the classifier for matching a 1-day COI to a

database of 90-day COIs.
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Figure 6.4.10: Comparison of the classifier for matching a 10-day COI to a

database of 90-day COIs.

6.5 Privacy-Preserving Matching

In this section we describe two protocols with variations for enabling two par-

ties to perform COI-based fraud detection with different privacy guarantees.

One protocol is based on the Private Set Intersection protocol of Section

6.2.2 and the other is based on secure two-party computation of Section

2.3.6. The two methods have different levels of privacy and overhead.

First we present a protocol for doing matching with the unweighted dice

criterion.

Although the inclusion of weight information did not generate better

results with our data, doing so was shown in [9] to achieve better results on

real data. Therefore we also show two different variations of the first protocol

and a protocol based on secure two-party computation for matching with the

weighted dice criterion with different privacy guarantees.
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6.5.1 Private Set Intersection Based Protocols

Unweighted Dice Criterion

To compute the Dice criterion we need to know how many phone numbers

appear in both input COIs; the cardinality of the intersection of the two

COIs. We can use the Private Set Intersection protocol of Section 6.2.2

to compute the cardinality of the set intersection. But the Server S has

to modify its behaviour in Step 2 b); instead of encoding y by computing

Enc(rP (y)+ y), S now encodes a “special” string Z, known to both parties,

i.e., S computes Enc(rP (y) + Z). In Step 3 of the protocol C now counts

the number of ciphertexts that decrypt to the special string Z. The choice of

Z = 0 gives a computational efficiency improvement, as Enc(rP (y) + Z) =

Enc(rP (y)).

In contrast to the original private set intersection protocol the Client

now cannot learn the elements in the intersection.

Simple Weighted Dice Criterion

This private set intersection based protocol has lower privacy guarantees

than the next one, but it is more efficient in computation and communication

costs. It is a simple adaptation of the Private Set Intersection protocol of

Section 6.2.2. In Step 2 b), instead of computing Enc(rP (y) + 0) the server

computes Enc(rP (y) + (y|wy)). Where (y|wy) stands for the concatenation

of y and wy. After decryption of all ciphertexts the client can determine the

common elements with their respective weights and therefore compute the

matching.

Obviously, in this protocol the client learns the elements of the intersec-

tion with their respective weights. But the efficiency is the same as that of

the unweighted version.
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Weighted Dice Criterion With Better Privacy Guarantees

In order to achieve better privacy, we split the sum in the numerator of

the Dice criterion into two sums:
∑

o∈A∩B pa(o) + pb(o) =
∑

o∈A∩B pa(o) +
∑

o∈A∩B pb(o). We then compute the two sums by running the private set

intersection protocol twice in opposite directions. In Step 2 b) the server

now computes Enc(rP (y)+(0|wy)). After decryption the client can sum the

wy to get
∑

o∈A∩B pa(o).

Although the elements in the intersection are not transmitted, the parties

might be able to extract information about the elements from the answers.

As both parties learn the sum of their respective weights of the elements

in the intersection, they might be able to infer which of their elements are

contained in that sum and which are not. This issue becomes more difficult

to ignore when multiple tests are made.

6.5.2 Secure Two-Party Computation Based Protocol

In order to achieve the highest privacy guarantees, we use garbled circuit

techniques (see Section 2.3.3) to implement the unweighted Dice criterion.

Note that the denominator can be computed by the Client without having

to interact with the Server. The basic structure of the Boolean circuit to

compute
∑

o∈A∩B wao+wbo consists of k sub-circuits, which given a number /

weight pair (ni, wi) of the client’s COI and the full COI ((m1, v1), . . . , (mk, vk))

of the server, outputs either wi + vj if ni = mj or 0 otherwise. Figure 6.5.11

shows the design of such a sub-circuit. In the first layer of comparators

(CMP) we compare ni to all mj . A comparator outputs 1 if the inputs

match and 0 otherwise. The second layer consists of multiplexers (MUX)

which, depending on the value of the control input, outputs either 0 or vj .

Note that at most only one multiplexer will output a value not equal to 0,

because there can only be one comparator that detects the match ni = mj .

The next layer consists of a chain of XOR gates and one multiplexer. The
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Figure 6.5.11: Part of the Boolean circuit to compute the unweighted Dice

criterion. It outputs si = wi + vj iff ni = mj and si = 0 otherwise.

XOR chain adds all outputs of the comparators of layer one and that con-

trols the multiplexer to output either wi or 0. Again, there can only be one

or zero comparators that output 1. Thus the multiplexer outputs wi iff there

is a match ni = mj. In the last layer we compute the sum of all outputs of

the multiplexer. This is either si = wi + wj or si = 0. At the end we have

to compute the sum of the si which can be realised with a simple chain of

ADD circuits.

For efficient constructions of circuits to compute CMP, MUX, and ADD

see [88]. Overall we need

k2CMP + (k2 + k)MUX + (k2 − k)XOR + (k2 + k − 1)ADD

sub-circuits, with k denoting the number of top-k numbers in a COI.

The complexity of a circuit is measured in non-XOR gates, as the eval-

uation of XOR gates is essentially “for free” (see [90]). The complexity of

these sub-circuits depends on the size of the inputs, i.e., the number of bits

needed to represent the inputs. Let ln be the number of bits to represent

a phone number and lw be the number of bits to represent a weight. The
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overall complexity, using the constructions of [88], is:

Complexity = 4k2ln + (5k2 + 5k − 4)lw non-XOR gates.

The parameter ln is determined by the length of the telephone numbers

and the consequences of the choice of k are examined in [72]. This leaves

us with the question of how to choose lw to achieve good detection results

while keeping the complexity of the circuit low.

6.5.3 Quantised Weighted Dice Criterion

The weight of an element in a COI is represented by a real number. However,

the privacy-preserving techniques we want to use in our protocols only work

for a finite set of integers. Therefore we have to quantise the normalised

weights, that is, we need to map the interval [0, 1] to a set of integers that

can be represented by b bits.

Although we could use the secure scaling protocol described in Chapter

4 to find a scaling factor for this mapping in a privacy-preserving manner,

we refrain from doing so because the scaling factor in this application leaks

no information. All inputs are from the interval [0, 1] and the resolution

does not have to be fine enough such that every input can be separated, as

we are not interested in separating but in finding similarities. Thus we do

not use secure scaling and save the extra overhead and instead use linear

quantisation.

As seen in the previous section the complexity of the protocol scales

linearly in the number of bits needed to represent the weight. In this section

we investigate how the choice of bits for the weight affects the detection

performance.

We use linear quantisation, that is, the interval [0, 1] is divided into 2b

equidistant intervals Si = [ i
2b
, i+1

2b
] for 0 ≤ i < 2b. A weight is then quantised

as q(w) = {min i|w ≤ i
2b
}.
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To analyse the quality of the quantisation we ran the same test as for

the classifier in Section 6.4.3 with the 90-day and the 1-day COIs. We use

the weighted dice criterion with different levels of quantisation.

We determine the quality of the quantisation by comparing the classifi-

cation result of the unquantised version with the quantised ones. Whenever

the classification for a subscriber differs we count that as an error.

Figure 6.5.12 shows the errors for the different levels of quantisation.

It shows that the numbers of errors decline with the increase of bits used

Figure 6.5.12: Comparison of different levels of the two quantisation types

against no quantisation for threshold and delta classifier.

for quantisation. It also shows that the delta classifier is less affected by

quantisation than the threshold classifier. From 10 bits onwards there is

almost no difference between quantised and non-quantised classification.

We also test empirical quantisation, where we divided the interval [0, 1]

into 2b sub-intervals, such that each interval contains the same quantity of

weights in our dataset. However, this approach lead to worse results than the

linear quantisation. We believe that the cause for this performance comes

down to resolution of the quantisation around the maximum values, since
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both classifiers take only either the highest or the two highest values into

account. Our data is heavily skewed towards low values, so the empirical

quantisation separates higher values rather poorly.

6.6 Implementation

We implemented the private set intersection protocol using the Python pro-

gramming language. We chose Python because of its suitability for rapid

prototyping and its vast collection of libraries. The core of the program is

Twisted [2], an event-driven networking engine. It simplifies the complexity

of networking by providing a suitable set of primitives.

The implementation consists of two programs, one implementing the

client’s, and one implementing the server’s functionality. They communi-

cate over the network using a TCP socket, thus they can be run on different

computers.

Although the implementation is fully functional, we do not want to omit

the limitations of our implementation. There is neither a graphical user

interface nor a connector to a database. We also assume that the program

is run through a secure communication channel. But since these are all

fairly standard components we believe that they can be easily added to our

implementation and their absence does not affect the measurements.

We use the same implementation of Paillier’s homomorphic encryption

scheme as in Section 5.5. It implements all the efficiency improvements

described in Section 2.2.2.

For the evaluation of the garbled circuit based version of the protocol

we used the secure two-party computation framework described in Chap-

ter 3. It is amongst the most efficient frameworks and comes with all the

tools necessary to create the Boolean circuit to compute the weighted Dice

criterion.



6.6. IMPLEMENTATION 139

6.6.1 Measurements

All measurements were run on a single iMac computer with a Core i3 3 Ghz

dual core CPU to prevent network delays from distorting the results.

One-to-One Comparison

First we measure the computation and communication costs for the com-

parison of one COI with another COI.

Private Set Intersection We ran all measurements with a key size of

1024 bits. Thus, the message space is 1024 bits wide as well. Therefore we

can easily encode a phone number and a high resolution quantised weight

in one encryption. Table 6.6.1 shows the computation and communication

costs for the different private set intersection based protocols.

Match. Crit. Comp. Cost Comm. Cost

Unweighted Dice 83 ms 5.25 KB

Simple Weighted Dice 113 ms 5.25 KB

Better Weighted Dice 113 ms 10.5 KB

Table 6.6.1: Comparison of the computation and communication costs for

the different private set intersection based protocols.

The dominating factor for the computation costs are the encryptions

with each encryption taking about 3 ms.

Weighted Dice with Secure two-Party Computation As shown in

Section 6.5.2, the size of the Boolean circuit, and consequently the compu-

tation and communication costs, depend on the size of the inputs.

We generated Boolean circuits with 40 bit wide phone numbers (this

allows 11 digits) and three different sized weights (6,8 and 10 bits). Table

6.6.2 shows the results.
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Bitlength for

weight (lw)

Circuit Size

(non-XOR gates)

Comp. Cost Comm. Cost

6 bit 5214 18 ms 192.04 KB

8 bit 5652 19 ms 207.17 KB

10 bit 6090 21 ms 222.43 KB

Table 6.6.2: Comparison of the computation and communication costs for

the garbled circuit based protocol

These measurements show that, apart from different privacy guarantees,

the different protocols also have different strengths and weaknesses in terms

of costs, depending on the underlying secure multiparty computation tech-

nique. The private set intersection based protocols take at least four times

longer to do a comparison than the secure two-party computation based

ones, but they have significantly less communication costs.

One-to-Many Comparison

The previous one-to-one comparison is useful but unrealistic, whereas in real

applications many comparisons are needed. We therefore look at the costs

for a one-to-many comparison. That is, the client can compare one COI

with the server’s database of n COIs. The näıve approach would be to run

n one-to-one comparisons, but we can achieve better.

In the private set intersection based protocols, the client only has to

encode its inputs as coefficients of a polynomial (Step 1) once. The Polyno-

mial can be reused by the server for Step 2 without giving any advantage in

obtaining information about the client’s inputs.

The communication costs for a one-to-n comparison are: Costscomm. =

2.75 + 2.5n KB and the computation costs are: Costscomp. = 35 + 48n ms.

Where the first summands are the costs for Step 1 of the protocol and the

second summands are the costs for the n executions of Step 2.
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The savings for the garbled circuit based protocol are not as pronounced

since no part of the circuit can be reused. However, there are savings in

establishing the initial configuration for the evaluation of the circuit. To

obtain the right encryptions for its inputs the client has to run an oblivious

transfer protocol. But those encryptions can be reused for all n comparisons

and therefore the oblivious transfer has to be done only once.

For the 10 bit wide weights the communication costs are: Costscomm. =

196.47n + 5.37n + 20.58 KB and the computation costs are: Costscomp. =

17n+n+3 ms. The first summands are the costs for evaluating the circuit,

the second summands are the costs for exchanging the server’s inputs and

the last summands are the costs for exchanging the client’s inputs.

Table 6.6.3 shows an estimation of the costs for running a 1-to-1000 and

1-to-100,000 comparison.

1-to1000 1-to100,000

Costs PSI S2PC PSI S2PC

computation 48 s 18 s 80 min 30 min

communication 2.44 MB 197 MB 244 MB 19.2 GB

Table 6.6.3: Estimation of the costs for 1-to-1000 and 1-to-100,000 compar-

isons for private set intersection (PSI) based and secure two-party compu-

tation (S2PC) based protocols.

Although the costs only grow linearly in the size of the database, they

can be challenging for larger databases. However, as the comparisons are in-

dependent from each other, the execution can be parallelised. The database

can be spread across several servers and Step 1 and Step 2 of the private

set intersection protocol consists of k independent threads, which can be

executed in parallel on k CPU cores.
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6.7 Conclusion

In this chapter we proposed a model to generate synthetic phone records with

nontrivial relationships. We used generated records to investigate how the

choice of matching criteria and classifier affects the detection performance

of the subscription fraud detection approach of [9]. We then extended their

technique to several protocols that allow telcom operators to match their

customers to the other telcom operators’ fraudster database without reveal-

ing any additional information about the data than is necessary to classify

the fraudster. Different levels of privacy are achieved by using two different

secure multiparty computation techniques. We implemented these protocols

to show feasibility and to compare their performance.

We believe that the benefit of co-operative fraud detection as proposed

in this paper outweighs the costs for running the protocol, as telcom oper-

ators might only know a fraction of all fraudsters and therefore a combined

fraudsters database promises better detection results. Fraud detection is an

offline process and can be run periodically. Hence, we do not believe, that

the slow execution time is critical. We provided several ideas to further im-

prove our results, and realistically, telcom operators would likely implement

a filter to only test suspicious subscribers.

We presented fraud detection solutions for two parties. If more than two

parties want to co-operate, the resources needed to share fraudsters infor-

mation will increase exponentially. However, as the underlying protocols for

our solutions are extendable to the multi-party case, we consider this to be

a potentially fruitful area of future research.

We believe that this signature-based detection approach might be useful

in other scenarios like user tracking with browsing metadata or communica-

tion analysis on Email logs.
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Conclusion

Communication networks, like the Internet, have developed from one initial

single entity controlled network into the network of networks of today. Each

network is controlled by a different service provider. These providers have

to engage in network management tasks like routing, traffic engineering,

performance analysis and fraud detection. Some of these tasks require co-

operation with other network providers, other tasks would strongly benefit

from co-operation.

Although co-operation seems beneficial for the providers, they also com-

pete, and much of the information they would need to share in order to

co-operate is considered secret. In this thesis we investigated how secure

multi-party techniques can enable co-operation without the need to reveal

secret inputs to another competitor.

In the first half of this thesis we presented improvements to the prac-

ticability of secure multi-party techniques. We demonstrated a new imple-

mentation of Yao’s two-party secure function evaluation protocol in Chapter

3, which leads to significantly better performance than previous implemen-

tations. The decoupling of memory demand from the circuit size, and an

oblivious transfer extension with fixed memory consumption overhead, lead

to a low memory footprint. This enables the evaluation of bigger circuits

with less memory. With improved memory efficiency, and implementation

143



144 CHAPTER 7. CONCLUSION

improvements like caching, we also achieved significantly faster execution

times than previous frameworks. Further improvements such as decoupling

of the unique gate ID from the circuit description, enables the framework to

re-use parts of the circuits and enables dynamic circuit sizes.

This framework was subsequently used to implement the secure scaling

protocol we presented in Chapter 4. It enables two parties to convert real-

numbered privacy-preserving problems into the integer domain by scaling.

Compared with previous solutions, we offer a more general approach that

does not limit the choice of secure multiparty computation (SMC) techniques

for the privacy-preserving problem, and does not introduce additional over-

head. The main component of our solution is a novel algorithm for privacy-

preserving random number generation.

In the second half of this thesis we demonstrated the application of SMC

techniques to problems in network management. We presented STRIP, a

distance-vector protocol, that allows routers to compute shortest paths with-

out learning the distances of any paths. We also greatly reduce the spread of

topology information by assuring that a participant only learns the next-hop

router for a route. Previously proposed privacy-preserving routing protocols

rely on a trusted third party for route computation. Our work maintains

the distributed nature of a routing protocol as we do not rely on any ad-

ditional players except a key distribution mechanism which already exists

for BGP in the resource public key infrastructure framework RPKI. The

basic privacy-preserving components of the protocol are easily extensible to

implement other types of path metrics.

In Chapter 6 we proposed protocols for privacy-preserving fraud detec-

tion. They enable telecommunication providers to co-operate in detecting

subscription fraud without violating protection laws for phone records. We

extended a call-signature based subscription fraud detection approach to

several protocols with different levels of privacy and two different SMC tech-

niques which enable telecommunication providers to mine each others fraud-
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ster databases. We also provide implementations of these protocols to show

feasibility and to compare their performance.

Our approach throughout this thesis was pragmatic. By providing imple-

mentations of all our ideas we want to show that SMC-based protocols can

be practical. We made the source code of all implementations available to

encourage experimentations with and adaptation of our ideas. The results

show that SMC could be highly beneficial to network operators.
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