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Abstract

This thesis contains a series of journal papers in which the compressive ductility of concrete
in RC members has been quantified through shear friction mechanics.

Firstly, the size dependent stress-strain models for unconfined and actively confined
concrete are derived based on the fundamental mechanics of shear friction theory. At this
stage, the shear friction properties, that is the relationship between the shear stress, normal
stress, crack widening and interface slip across the sliding plane, are not specifically
required. It is shown how the stress-strain from cylinder tests of one specific length can be
modified to determine that for any size of cylinder. Moreover, it is shown that the proposed
approach can be used to make existing generic stress/axial-strain relationships size
dependent and these size dependent relationships can be directly used to determine the
corresponding size dependent stress/lateral-strain relationship. Being mechanics based, size
dependent stress-strain models reduce the reliance on vast experimental testing as only one
size of specimen needs be tested to obtain stress-strain relationships for all sizes.

Secondly, the shear friction properties, that is the relationship between the shear stress,
normal stress, crack widening and interface slip across the sliding plane is derived and
presented in a generic form suitable for application. These generic shear-friction material
properties are then used to simulate and quantify the shear-sliding behaviour of initially
uncracked concrete generally obtained directly from relatively expensive tests. In addition,
it is also shown how these shear-sliding capacities can then be used to quantify the shear
capacity of RC beams without stirrups and without the need for size factors as the
mechanics based approach automatically, through mechanics, allows for member size.

Thirdly, the generic shear-friction material properties derived in Chapter 3 are used to
simulate passive confinement in FRP confined cylinders. Importantly, two distinct cylinder
failure modes have been identified and examined: that of the circumferential wedge that is
common in standard cylinders with aspect ratios of 2:1; and that of the single sliding plane
that occurs at higher aspect ratios. It shows the mechanics solutions for the influence of
specimen size, that is both diameter and height, on the stress-strain relationship of axially
loaded FRP confined concrete cylindrical specimens and how small scale FRP wrapped
specimens suitable for compression testing can be designed so that the stress/strain
relationship of the full scale member under pure compression can be extracted from those
of the small test specimen.

Finally, a series test of steel tube confined concrete columns is designed to verify the
accuracy of the size effect expressions proposed in previous chapters. Importantly, it shows
that because the standard material test always adopts small scale 2:1 aspect ratio
specimens, the majority failure mode in material test specimens is the circumferential
wedge failure. Consequently it is for this wedge failure mode that most axial-stress/global-
axial-strain relationships are developed. However, similar to the specimens studied in this
test program, the aspect ratio of most practical steel tube confinement columns is more
than 2. Hence only in a minority of cases does the circumferential wedge failure occur in
practice. Therefore, the empirical or semi-empirical equations developed from small scale
concrete specimens are not truly representative of the actual behaviour of full-scale
columns which have aspect ratios markedly different from the 2:1 ratio most commonly
tested.
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Introduction and General Overview

The axial-stress/axial-strain behaviour of concrete under compression is crucial in
determining both the strength and ductility of reinforced concrete members. In this thesis,
it is shown that concrete deformation due to compression is both a material property and a
shear-friction mechanism and that by taking into account both of these deformations a size
dependent stress-strain relationship can be derived.

This thesis contains a collection of manuscripts published, accepted or submitted to
internationally recognised journals. Each of the chapters 1 to 4, which are titled according to
the research objective, contain: an introduction explaining the aim of the chapter and how
the work fits into the overall objective; a list of manuscripts contained within the chapter;
and finally the presentation of each manuscript.

Chapter 1 introduces the fundamental mechanisms of the developed segmental
deformation approach for the generic analysis of reinforced concrete (RC) beams
incorporating: a size-dependent stress-strain model to simulate the concrete wedge
formation associated with concrete softening; and residual strain partial-interaction (PI)
theory to directly simulate the effects of tension-stiffening as the internal bonded
reinforcement pulls from the crack face. This background paper shows the overall project of
our research group of which this thesis mainly focuses on the analysis of size-dependent
stress-strain models.

Chapter 2 contains two journal papers which use the mechanics of shear friction theory to
simulate the formation and displacement of sliding planes as concrete softens and then
derives size dependent stress-strain models. The first paper extracts size dependent strains
at the peak stress from 380 published tests on unconfined concrete and then uses it in
existing curve fitting models to produce size dependent stress-strain models for unconfined
concrete. The second paper has reanalysed 692 published test results on confined concrete
to provide size dependent stress/strain relationships for both axial and dilatory strains in
both the ascending and falling branches and for a wide range of confinements. The new
approach in these two papers considerably reduces the amount of testing required for new
concretes as only one size of specimen is required to be tested for obtaining stress-strain
relationships for all sizes.

Chapter 3 focuses on the shear-friction material properties across potential sliding planes,
that is the relationship between the shear stress, normal stress, crack widening and
interface slip across an initially uncracked concrete sliding plane. It shows how the shear-
friction material properties can be quantified from relatively readily available and
inexpensive compression tests, and then presented in a generic form which is directly
applicable for the papers in Chapter 4.

Chapter 4 consists of three papers that show the applications of shear friction properties
proposed in Chapter 3. The first paper shows how these shear-friction material properties
can be used directly to quantify the shear-sliding capacity and also how these shear-friction
material properties can also be used to analyse standard shear-sliding tests in order to
extract more accurate shear-sliding capacities. It is then shown how these shear-sliding
capacities can be used as the failure criteria to quantify the shear capacities of reinforced
concrete beams. The main aim of the first paper is to show that the use of mechanics and
shear-friction material properties can not only quantify apparently diverse behaviours such
as the shear capacity and flexural ductility but also reduce the cost of developing new RC



products and in developing more accurate and less conservative design rules. In the second
paper, two distinct cylinder failure modes have been examined: that of the circumferential
wedge that is common in standard cylinders with aspect ratios of 2:1; and that of the single
sliding plane that occurs at higher aspect ratios. Importantly, from this is shown that
although each mechanism is defined by the same shear friction material properties different
stress strain relationships result and this may explain some of the scatter of test results. In
the third paper, mechanics solutions have been developed to show the influence of
specimen size, that is both diameter and height, on the stress-strain relationship of axially
loaded FRP confined concrete cylindrical specimens using shear friction theory. Due to the
capacities of the testing machines, it is often quite difficult to test large or full-scale FRP
wrapped specimens under pure compression in order to extract their axial-stress/axial-
strain relationships. The third paper shows that through the mechanics of shear friction,
how small scale FRP wrapped specimens suitable for compression testing can be designed
so that the stress/strain relationship of the full scale member under pure compression can
be extracted from those of the small test specimen.

Chapter 5 is the experimental work for steel tube confined concrete of which the test data
can be used to verify the axial and lateral size expressions proposed in Chapters 2 and 4
respectively. It also shows that the proposed expression of the sliding angle a that is
dependent on the confinement stress and proposed in Chapter 2 of this thesis has a very
good correlation with the experimental results. Importantly, as the standard material test
always adopts small scale 2:1 aspect ratio specimens, the majority of the failure modes in
material test specimens is the circumferential wedge failure and from which most
axial-stress/global-axial-strain relationships are developed. However, similar to the
specimens studied in this test program, the aspect ratio of most practical steel tube
confinement columns is more than 2, so only in a minority of cases does the
circumferential wedge failure occur. Therefore, the empirical or semi-empirical
equations developed from small scale concrete specimens are not truly representative of
the actual behaviour of full-scale columns which have aspect ratios markedly different
from the 2:1 ratio most commonly tested.

Chapter 6 shows the concluding remarks of this research. The applications of size dependent
models and shear-friction material properties for passively confined RC members provides a
novel technique in simulating what is actually observed in practice. The generic approach
proposed in this thesis can easily be repeated and updated by following researchers for new
types of concrete.



Chapter 1: Background

Introduction

Chapter 1 presents the first manuscript “Flexural rigidity of reinforced concrete members using
a deformation based analysis” which provides a background to the existing research in the area
and highlights the overall need for this research. The fundamental mechanisms which form the
basis of this research for the remainder of the thesis which can simulate the mechanisms of
tension-stiffening, wedge softening and shear failure. Being mechanics based, it is shown how
the approach reduces the reliance on vast experimental testing and hence can help refine
existing design models and help expedite the development of new products.

List of manuscripts

Oehlers, DJ., Visintin, P,. Zhang, T., Chen, Y., and Knight, D. (2012). “Flexural Rigidity of
Reinforced Concrete Members Using a Deformation Based Analysis.” Concrete in Australia,
38(4), 50-56.
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Flexural Rigidity of Reinforced Concrete Members Using a Deformation Based
Analysis

D. J. Oehlers, P. Visintin, T. Zhang, Y. Chen, and D. Knight

School of Civil and Environmental & Mining Engineering, The University of Adelaide

Abstract: The flexural rigidity (El) of a member section is intrinsic to structural engineering
methods of analysis and design of reinforced concrete (RC). Central to determining El is the
strain based moment-curvature (M-x) approach. The problem with the M-x approach is that
being strain based it is two-dimensional and, hence, cannot cope directly with the
mechanisms that control both tension-stiffening and concrete softening due to wedge-
sliding. To overcome this problem, the M-y approach uses empirically based approximations
such as effective Els or hinge lengths, which, not being mechanics based, are only
approximations and can only be used within the bounds of the tests from which they were
developed. Consequently they are generally inaccurate, conservative, have limited use and
have to be repeatedly determined for new products. This empirical approach has held back
the development of new products and the refinement of existing approaches. A
deformation based moment-rotation (M-8) approach is described which being three-
dimensional can simulate the mechanisms of tension-stiffening, wedge softening and shear
failure. Being mechanics based, it can predict the flexural rigidities, of sections with any type
of materials, with any residual strains, and at all stages of loading, for use in the analysis of
the member. As this approach requires considerably less testing and is mechanics based, it
should help refine existing design models and help expedite the development of new
products.

1.0 INTRODUCTION

The flexural analysis and design of RC members is based on the Euler-Bernoulli principle of
plane sections remaining plane. The linear strain profile used in the M-x approach is a
corollary of the Euler-Bernoulli principle and is referred to as a strain based approach.
Hence to use the M-x approach all deformations, whether they occur in the materials, or are
due to mechanisms, have to be input in the form of strains and stresses.

The flexural behaviour of reinforced concrete flexural members depends on the material
properties which are determined experimentally, such as the stress-strain (o-€) behaviour of
the concrete and reinforcement. However, the flexural behaviour also depends on the
partial-interaction mechanism of tension-stiffening (Muhamad et al 2011; Oehlers et al
2011a; Muhamad et al 2012; Knight et al 2012) and the partial-interaction mechanism of
wedge sliding which is associated with concrete softening (Visintin et al 2012a; Visintin et al
2012c; Chen et al 2012). While the M-x approach can cope with variations in the material o-
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€ relationships it cannot cope with the mechanics of tension-stiffening and concrete
softening through the formation of wedges (Oehlers 2010; Oehlers et al 2011b; Oehlers et al
2012a). These gaps in the mechanics of the M-x model are filled in with experimental
approximations. Consequently the M-y approach requires two distinct forms of testing:
material testing such as the o-e material properties which is straightforward; and mechanics
testing to develop components of the mechanics model such as hinge lengths and effective
flexural rigidities. Material testing is relatively straightforward and inexpensive. Mechanics
testing is however very expensive as it has to cover the wide range of parameters
associated with RC members and even then the results used in design may have to be highly
conservative to cover the large scatter. After the development of the design or analysis
model, a separate series of tests is often carried out to validate the model prior to
application that is validation testing. Validation testing is always required as a safeguard and
it is neither part of mechanics testing nor material testing.

Mechanics testing has been a bane for RC developers due to the huge cost, which has
subsequently held back the development of RC. The results of mechanics testing have been
a bane for reinforced concrete structural engineers as they generally lead to very
conservative and restrictive designs. In contrast, mechanics testing has been a boon to
reinforced concrete researchers around the world who have had a field day getting grants to
apply old techniques to try to find simple empirical solutions that do not exist (Oehlers
2010; Oehlers et al 2011b; Oehlers et al 2012a). Mechanics testing should not be required if
the mechanics model truly simulates all aspects of RC behaviour. In this paper a
deformation based M-8 mechanics model is described which eliminates the need for
mechanics testing and consequently has the potential to considerably reduce the cost of
development, as well as provide more accurate design solutions with a greater range.

A M-8 displacement based technique (Oehlers et al 2011a; Knight et al 2012; Visintin et al
2012a; Visintin et al 2012c; Chen et al 2012; Oehlers et al 2012a; Mohamed Ali M.S. 2012;
Visintin et al 2012b), as opposed to the M-y strain based technique, is described which goes
back to the original Euler-Bernoulli principle of plane sections remaining plane. It is shown
that prior to the mechanisms of concrete softening and the occurrence of concrete cracking,
the displacement based M-6 and the strain based M-x approaches give exactly the same
results. However after cracking and/or softening, the M-8 approach gives mechanics
solutions and, hence, obviates the need for mechanics testing. It will also be shown that: the
results of the M-8 can be easily converted to variations in moment-curvature (M/x) and
moment-flexural-rigidity (M/El) which can then be used in the analysis of flexural members
at all stages of loading that is at serviceability, ultimate, collapse and cyclic loads (Visintin et
al 2012b; Oehlers et al 2012b); that this approach can cope with residual strains at all stages
of loading including after cracking and after softening (Knight et al 2012); and, furthermore,
can then be used to quantify the shear capacity of flexural members (Lucas et al 2011; Lucas
et al 2012) further obviating the need for mechanics testing in an area currently even more
ridden by the cost of mechanics testing.
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In this paper, two size-dependent mechanisms, which the M-x approach cannot deal with
directly, are first described: the concrete softening mechanism; and the tension-stiffening
mechanism. It is then shown how these size-dependent mechanisms can be included in a
size-dependent deformation based analysis to determine, through mechanics, the variation
in the sectional properties and, hence, obviate the need for mechanics testing. Then to
conclude, it is shown how the shear capacity of an RC member can be extracted from a
deformation based analysis further obviating the need for mechanics testing.

LLTLy

Fal |

. l—def
Localised

crushing”

Sliding ]|
plane

Figure 1. Compression test

2.0 CONCRETE SOFTENING MECHANISM (Chen et al 2012)

A compression test of height L, and width d,, is subjected to an axial stress o, in Figure 1.
Because the stresses do not vary along the length L,,, this test resembles the behaviour in a
constant moment region in a beam. Softening is associated with slip along sliding planes,
forming a wedge at an angle a, which encompasses an inner cone as shown; the occurrence
of interface slip means that this is a partial-interaction problem. Strain gauges could be
placed well away from the sliding planes in Figure 1 which would then register the material
strain €yt and this could be used to determine the material stress-strain (o-€) property.
Global strains g4 could be measured by dividing total contraction over the total length Ly, by
Lor and this could be used to determine the global o-€ relationship. As the stresses are
increased, the material strains emas: and global strains gg diverge and tests have shown that

14



this divergence depends on the shape of the specimen L,/d,- and the length of the
specimen L.

Consider the deformation of a quadrant of the specimen of length Lges as in Figure 2. The
natural angle o of the wedge is about 26° which means that the natural angle of the wedge
can occur in specimens in which L,,/d,r 2 2 such as in Figure 1 where Lget > Lwgg. The wedge
slides a distance A in Figure 2 which has an axial component Hyqs. From shear-friction
theory, the slip A depends on both o, and a. Hence in specimens in which Ly/dp 2 2 in
which a is constant at 26°, the slip A and consequently the axial contraction Hygz only
depends on 0. Hence the effect of shape Ly/d,r on the stress-strain relationship can be
eliminated by ensuring that Ly./d, 2 2. This leaves the size dependency.

s

A
DE.‘(
I TATRTR
deg
Lyes -r--
h'"“'-u‘_‘ Lwdg
Sliding
plane
- __ -_———x
1
>
1 dprfz L]

Figure 2. Compression analysis

The contraction of the quadrant D,y in Figure 2 is due to the material contraction €matLger
and that due to sliding Hygg. Dividing these contractions by Lger gives the global strain as

€91 = Emat T Ewag (1a)
where
_ Hwag
fwag =) (1b)
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where Hygg/Lget is the effective strain due to wedge sliding ewqg. The slip A, and consequently
Hwdg, is @ shear-friction material property and, therefore, independent of the member size
Lgef. Hence it is the sliding component of contraction in Equation (1) which is size-dependent
and if this can be extracted from test results it can be used to derive size-dependent
relationships as follows.

Let us assume that the stress-strain relationship in Figure 3 labelled (L) is that derived
from a specimen in which Ly/dpr 2 2 so that we can assume that €, is only dependent on
Oax- Strain gauges were used to measure the material properties 0-a-b-c which is shown as
linear for convenience but could just as easily be non-linear. Furthermore, the total
deformation of the prism was used to derive the global stress-strain relationship o-a-d-e.
Hence from Equation (1) at stress level o, the material strain is €, as shown and the
effective strain due to wedge sliding is €4z as shown. If the prism length is doubled to 2Ly,
then from Equation (1) the sliding component €,,4; is halved but €yt stays the same which
produces the curve marked (2L,) in which the stress-strain becomes more brittle.
Conversely, if the prism length is halved, but the width adjusted if necessary to ensure that
Lor/dpr 2 2, then the stress-strain becomes more ductile.

It can be seen in Figure 3 that only one size of specimen needs to be tested to determine
the size dependent stress-strain properties which should help reduce the cost of testing.
However and much more importantly, it will be shown that these size-dependent stress-
strain material properties can then be used in a size dependent analysis to quantify
sectional properties for use in member analyses and eliminate mechanics testing.

Figure 3. Size dependent o-¢

3.0 TENSION STIFFENING MECHANISM (Knight et al 2012)
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A typical tension-stiffening test is illustrated in Figure 4. The prism is of length L, and depth
dort and is concentrically loaded to ensure no bending. As the axial load P is constant over
the length of the prism it resembles the constant moment region in a beam. For a given
axial load P, the stresses in the concrete increase from zero at the ends to a maximum near
mid-length. As the load P is increased, the stresses build up in the concrete until a single
crack, which will be referred to as the initial crack, occurs. With the applied load P, which is
also and obviously the force in the reinforcement at the initial crack, sliding between the
reinforcement and the adjacent concrete at their interface causes a slip at the crack face A,
such that the total crack width w¢, is 2 A, at the level of reinforcement load P. To quantify
this slip and the forces it induces, requires a partial-interaction theory that incorporates the
bond-slip (t-s) relationship. There are numerous closed form or numerical solutions readily
available that can quantify the variation in interface slip s or interface slip-strain ds/dx along
the member and the only difference in the solutions are the required boundary conditions.

Let us first consider the behaviour at the initial crack in Figure 4 which is shown in Figure
5(d) and labelled single crack to distinguish it from analyses in which there are multiple
cracks. Partial-interaction theory, which requires the bond-slip properties (t-s) can be used
to: quantify the variation in the slip-strain ds/dx in Figure 5(a) in which ds/dx is the
difference in strain across the bond interface, that is g€, in Figure 5(d); the variation in the
bond shear stress T along the prism as in Figure 5(b); and the variation in slip s as in Figure
5(c).

: Lor i

C te pri < - n
DH/UE eprism : 4, “Initial crack |
y
P ‘4 ‘eWCT=ZACT P
o d_+— —
NN I

Reinforcement

Figure 4. Tension-stiffening test

For a long length of reinforcing bar, the boundary condition required for the single crack
analysis in Figure 5(d) is that at some point distance Lyim from the crack face both ds/dx and
s tend to zero as shown in Figure 5(d). The partial-interaction analysis in Figure 5(d) can
predict the minimum position at which the next crack could occur, should the concrete
stresses be large enough, which is also Lyrim and the load in the reinforcement to cause it to
occur Pyrim. This gives the minimum spacing of the primary cracks Lyim. Once primary cracks
occur, the partial-interaction analysis is that of a symmetrically loaded prism in Figure 5(e)
of length Lyim Where by symmetry the slip at Lyim/2 is zero which is the new boundary
condition. The analysis of this prism can be used to predict when cracking could occur at the
mid-length Lyrim/2 and should these secondary cracks occur the analysis is that shown in
Figure 5(f).
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(c) Bond slip distribution

A (slip atcrack face) o ds/dx=5=0
v y -
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1 c
P ¥
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(d) Single crack
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...... “
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(f) Secondary crack

Figure 5. Tension-stiffening analysis

It can be seen that the only requirements for this mechanics model are the material
properties of the concrete and reinforcement and in particular the bond properties. Hence
the model can cope with any type of reinforcement with any type of concrete with any type
of bond properties. Furthermore it will be shown that this size-dependent mechanism can
be incorporated into a size-dependent analysis which obviates the need for mechanics
testing to allow simple design approaches to be developed. It may also be worth noting that
the model can cope with residual strains such as prestress, shrinkage and thermal gradients
as well as creep and relaxation before and after cracking.

4.0 DEFORMATION BASED ANALYSIS (Visintin et al 2012a and 2012b)
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The aim is to extract the sectional properties such as x and El which can then be used in a
member analysis. To do this, let us consider a segment of the member of length 2L4es as
shown in Figure 6 which is subjected to a constant moment. The segment is subjected to an
Euler-Bernoulli deformation at is ends which cause the rotations 8. The size-dependent
tension-stiffening model and the size-dependent concrete-softening model, described
previously, are applicable in regions where the axial forces are constant and, hence, they
can be incorporated directly into the segment as this is subjected to a constant moment

region.
Ldef < Lwdg > Lwda > Ldsf
< < >
(o] o
,""'(}
Euler-Bernoulli Euler-Bernoulli
deformation deformation
_-Initial crack

=9 O -0 B Rk R R R R T

““Tension-stiffening prism

Debonding along member  Lorim

Figure 6. M/9 single crack

The analysis in Figure 6 is for a segment with a single crack. Hence the tension-stiffening
analysis with the boundary conditions in Figure 5(d) applies. This can be used to quantify the
relationship between P and A at the initial crack in Fig. 6. This form of analysis also allows
for debonding along the member as illustrated at the bottom of Figure 6 and, hence, is
useful for reinforcements with weak bond such as in FRP reinforcement. Hence if debonding
does not need to be accounted for, Lyer Needs only be equal to Lyim, otherwise, it should be
greater to simulate debonding along the member. If softening is to be accounted for, then
Lger must be greater than the length of the wedge Lyqg as shown.

The analysis in Figure 5(d) gives the force in the reinforcement to cause the concrete to
crack that is the reinforcement force to cause primary cracking Pyrim as well as the minimum
spacing of these primary cracks Lyim. Once these primary cracks occur, the segment has two
cracks at its ends and a length Lyimas in Figure 7 and the P/A. relationship is given by the
analysis in Figure 5(e). The analysis in Figure 5(e) also gives the reinforcement force to cause
secondary cracks, then if they do occur the analysis is the same as in Figure 7 except that
the length of the segment is now Lyim/2 and P/A given by Figure 5(f).

19



Ldef: Lprim/2 . Ld ef= LD riml’z

v

eracl(face

_:‘:‘_-..
1
1

«— F_
SR A ISR PP (I
| 1 a
P
i A Lger |
(a) Deformation (b) Strain (c) Stress (d) Force

Figure 8. M/9 analysis

The M/8 analysis for the segments in Figures 6 and 7 is depicted in Figure 8 where only
half a segment needs to be analysed as the other half is a mirror image. A deformation is
imposed as in Figure 8(a). If the concrete is uncracked and not softening, then there is a
linear strain profile a-b-c as in Figure 8(b) and the standard M/x analysis ensues such that:
the stresses in Figure 8(c) are strain based that is determined from the material stress-strain
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relationship; from which the forces in Figure 8(d) can be derived; and it is a question of
moving the strain profile in Figure 8(b) up and down at the fixed x until equilibrium is
achieved.

If cracking occurs in the analysis in Figure 8, then the force in the reinforcement F; in
Figure 8(d) can be derived from the tension-stiffening analyses in Figures 5(d), (e) and (f)
depending on their boundary conditions, and the remaining forces from the strain profile b-
c in Figure 8(b). If softening occurs, then F.. in Figure 8(d) is now derived using a size-
dependent stress-strain relationship in which Ly in Figure 3 is equal to 2Lger in Figures 6 or 7.

0 - X6/l El
(a) (b) (@

Figure 9. Sectional properties

The results of the M/8 analysis quantify the behaviour at all levels of loading as in Figure
9(a) which includes serviceability, ultimate and failure. The analyses can include the effects
of prestress, creep, shrinkage and relaxation. The analysis can be applied to any concrete
and any reinforcement and can allow for changes in these properties as might occur through
degradation. Only material testing is required and there is no need for the gross expense of
mechanics testing.

The results of the M/6 analysis as depicted in Figure 9(a) can be converted to M/x
variations as in Figure 9(b) by simply dividing 6 by Lger. From the secant stiffness of the M/x
variation, can be determined the M/EI variation in Figure 9. Either the curvature or the
flexural rigidity can then be used in a member analysis.
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5.0 SHEAR FAILURE OF DEFORMATION BASED ANALYSIS (Lucas et al 2011)

The deformation based analysis in Figure 8 can readily be applied to inclined diagonal cracks
as shown in Figure 10 where: the diagonal crack is inclined at an angle B; the force in the
stirrup Fs can be derived from the partial-interaction analysis in Figure 5(d) or where the
boundary condition is that the slip is zero at the bend of the stirrup. The displacement based
flexural analysis gives the forces acting along the potential sliding plane A-A. Importantly,
from the normal component of these forces on the sliding plane, can be derived the normal
compressive force across this sliding plane as it is this force which quantifies through shear-
friction the capacity of this sliding plane to resist shear and consequently the shear capacity
of the member.

Figure 10. M/8 diagonal crack

It can be seen in Figure 10 that the shear capacity depends on the forces engendered by
flexure and that a mechanics solution is now available to quantify the shear capacity which
should no doubt further reduce the cost of developing new products by reducing the
amount of mechanics testing required.

6.0 CONCLUSIONS

There are three types of testing required in reinforced concrete structural development and
design: material testing to determine the fundamental and basic material properties;
mechanics testing to find empirical solutions where there are gaps in the understanding of
the mechanics; and validation testing to ensure safe use. The problem with reinforced
concrete is that much of the expense of development is in mechanics testing simply because
current design and analysis models are unable to simulate mechanisms that are known to
occur such as tension-stiffening, concrete softening and shear failure.
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Structural design should be easy. There should be a structural mechanics model that
simulates all modes of behaviour and failure and the only experimental input should be the
material properties. The model could then be used: to develop simple and efficient design
rules for codes; by structural engineers to analyse and design complex members; and by
developers who should only need to measure the material properties. Nothing more than
material testing should be required if the structural mechanics model truly simulates the
behaviour. Unfortunately this is not the case in reinforced concrete and it is this lack of a
mechanics model which has considerably increased the cost of development and limited the
accuracy and width of design.

A deformation based flexural analysis has been described which can simulate the
mechanics involved in concrete-softening, tension-stiffening and shear failure. The aim is to
develop this mechanics model to such an extent that the cost of mechanics testing is
removed or considerably reduced which should help in the development of new products or
techniques and provide much more accurate analysis techniques.
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8.0 NOTATION

D,x total axial deformation

dpr  width of prism

dort depth of tension stiffening prism
ds/dx slip-strain; &,-g¢

E. concrete modulus

El flexural rigidity

F  force profile

Fec concrete compressive force

f.o concrete compressive strength
F.: concrete tensile force

F.. forcein compression reinforcement
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F. tensile force in reinforcement

Fs forcein stirrup

Hwdgaxial component of A

Lger deformation length

Lor length of prism

Lorim primary crack spacing

Lwag length of wedge

M  moment

P reinforcement force

P, axial force

Porimreinforcement force to cause primary cracks
RC reinforced concrete

S shear force along inclined plane

s slip

V  vertical shear force

W width of crack at level of reinforcement
o wedge angle

B inclination of diagonal crack

A slip along sliding plane

A, reinforcement slip at crack face

A gistirrup reinforcement slip at crack face
6 deformation profile

6y contraction at top surface

€ strain; strain profile

€. concrete strain adjacent to reinforcement

€, Strain atf
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€g global strain; total strain over L,
E€mat Material strain

g, reinforcement strain

Ewdg effective strain due to A

0 rotation

o stress; stress profile

O.x axial stress

o, n™ level of axial stress

T shearstress

X  curvature
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Chapter 2: Size Dependent Models for Concrete in Compression

Introduction

This chapter contains two published journal papers in which it is shown how the fundamental
mechanics of shear friction theory can be used to describe the mechanism of size effect in un-
confined and actively confined concrete.

In the first paper “Size dependent stress-strain model for unconfined concrete” it is shown that
concrete deformation due to compression is both a material property and a shear-friction
mechanism and that by taking into account of both of these deformations it is possible to
derive a stress-strain relationship that is size dependent. It is also shown how the stress-strain
from cylinder tests of one specific length can be modified to determine that for any size of
cylinder.

In the second paper “Size dependent axial and lateral stress strain relationships for actively
confined concrete” the shear friction mechanism used to describe size effect described in the
first paper is extended to actively confined concrete.. Moreover, it is shown that the proposed
approach can be used to make existing generic stress-axial strain relationships size dependent
and these size dependent relationships can be directly used to determine the corresponding
size dependent stress/lateral-strain relationship which is often difficult to measure as compared
to the axial contraction.
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relationships for actively confined concrete.” Accepted for publication by Advances in Structural
Engineering on 05/06/2014.

27



Statement of Authorship

Size dependent stress-strain model for unconfined concrete. Journal of Structural Engineering
2014, 140(4), 10.1061/(ASCE)ST.1943-541X.0000869.

Chen, Y (Candidate)
Performed analyses and developed model

| hereby certify that the statement of contribution is accurate and | give permission for the
inclusion of the paper in this thesis

Visintin, P
Supervised and contributed to research

| hereby certify that the statement of contribution is accurate and | give permission for the
inclusion of the paper in this thesis

28



Oebhlers, DJ
Supervised and contributed to research

| hereby certify that the statement of contribution is accurate and | give permission for the
inclusion of the paper in this thesis

Alengaram, U.
Contributed to research

| hereby certify that the statement of contribution is accurate and | give permission for the
inclusion of the paper in this thesis

29



Size Dependent Stress-Strain Model for Unconfined Concrete

Chen, Y., Visintin, P., Oehlers, D.J., and Alengaram, U.J

Abstract: The stress-strain behaviour of concrete under compression, both in the ascending and
descending branches, is crucial in determining both the strength and ductility of reinforced
concrete members. This material property is generally determined directly from compression
tests of cylinders or prisms. However, it is widely recognised that this material property
depends on both the size and shape of the test specimen and the method of measurement. In
this paper, it is shown that concrete deformation due to compression is both a material
property and a shear-friction mechanism and that by taking into account of both of these
deformations it is possible to derive a stress-strain relationship that is size dependent. It is also
shown how the stress-strain from cylinder tests of one specific length can be modified to
determine that for any size of cylinder. With this new procedure, the results from 380
published tests on unconfined concrete have been reanalysed to extract size dependent strains
at the peak stress which are then used in existing curve fitting models to produce size
dependent stress-strain models for unconfined concrete. It is shown how these size dependent
stress-strain models can be used in a size-dependent deformation based approach to quantify
both the strength and ductility of reinforced concrete members.

Author keywords: Unconfined concrete; Unconfined concrete properties; Stress-strain
concrete; Size dependent concrete properties; Deformation based model.

Introduction

The compressive axial stress-strain (0..-€2x) properties of concrete, both the ascending and
descending branches, are an intrinsic component of reinforced concrete analysis and design. In
general, these 0.-£.x properties are obtained directly from compression tests on concentrically
loaded cylinders or prisms, herewith referred to as prisms, such as in Fig. 1 where L, is the
length of the specimen and d,, the diameter or width. However, these measured Gax-€ax
properties can vary widely depending on the method of measurement and the shape and size
of the concrete specimens. For example, when an axial stress o,y is applied which causes a total
axial shortening Dax as shown, then the global strain Du/Lor (€axgt) can be determined by
measuring the total contraction between the platen and base; this gives the global stress-strain
relationship (0a.x-€axgl). However, if the strains are measured locally (ga4c) such as by using strain
gauges at positions A or B, then the local stress-strain relationship oax-€axc Will not be the same
as the global stress-strain relationship o.x-€axg. Even if the local strains are measured at demec
points such as at C-D and D-E which averages the strains over these regions, then these local
average stress-strain relations (0ax-€axc) Will vary along the length of the specimen L. This
problem of the variability of the strains due to the measuring techniques has been long
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recognised (Sangha and Dhir 1972, Kotsovos 1983, Ahmad and Shah 1985; Van Mier 1986a and
1986b, Shah and Sankar 1987, Jansen et al 1997).

cone — | < -
Dax A
I
demec - a§ H
points wdg
L wa
e strain
A
. g B Lor
potential
wedge
I-wdg
N C; Hudg
Y

Fig. 1. Compression tests

As well as depending on the method of measuring the strain, tests have shown that the global
stress-strain relationships (Cax-€axg) depends on both the shape which will be defined as

Lpr
p=-= (1)

pTr

and the size of the specimen which will be defined as
Ly
n= “pr-1 (2)

that is the ratio of the prism lengths. For example, standard compression cylinder tests in which
the slenderness factor u equals 2, fail at a lower peak stress f., than those from standard cube
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tests in which p equals 1, and codes (British Standards 1996; CEB-FIP1990) give conversion
factors to relate these strengths. Furthermore, tests have shown that in specimens in which p
exceeds 2, the strength f., hardly varies, if at all, when the length is increased, that is the
strength is independent of the size factor n. In contrast for the same specimens, the strain at
the peak stress g, as well as those on the descending branch reduce when the length is
increased, that is the strain depends on the size factor n. This has led to the recognition that
there are different zones of behaviour that govern compression failure and such techniques
such as energy (Sangha and Dhir 1972; Kotsovos 1983; Van Mier 1984; Shah and Sankar 1987,
Hillerborg 1989, 1990; Torrenti et al. 1993; Bazant et al 1994; Markset and Hillerborg 1995; Lee
et al 1995; Jansen and Shah 1997) or sliding and shear-friction (Fantilli et al 2007; Mohamed Ali
M.S. 2010; Haskett et al 2010; and Haskett et al 2011) have been used to quantify the
compressive behaviour in zones where there are large deformations such as where wedges of
length Lygg may form as shown in Fig. 1.

This paper follows the zone approach in particular the excellent and original sliding
mechanism proposed by Fantilli et al (2007) but not directly their method of analysis. It is
assumed that the global strain €, due to the overall contraction D,y in Fig. 1 is due to: material
strains €mat along the length of the member L, which can be measured through the use of
strain gauges, such as at A and B, and which cause a contraction €matlpr; and the effective strain
due to the mechanism of sliding of the wedges which cause the axial movement Hyqg as shown
and consequently an effective strain 2Hyqg/Lor (Ewag) @and which can only be measured through
the total contraction, that is not through strain gauges. It is this latter component of strain, the
effective strain due to wedge sliding €45, Which makes the stress-strain relationship both size
and shape dependent. This principle is first used to develop a strain adjustment factor for
directly converting tests of a specific size (Lyr.1) for use in specimens of any size (Ly-;) and these
are then compared with test results. This size-dependent strain adjustment factor is then
applied to the reanalysis of 380 published test results to produce generic stress-strain (Oax-€axgl)
relationships for use in any size of specimen. As these generic stress-strain relationships are size
dependent, they are not suitable for the standard moment-curvature (M/x) approach as it is
strain based and simply cannot cope with specimen sizes unless a hinge length or constant
moment length (Fantilli et al 2007) is assumed. Instead a moment-rotation (M/8) approach is
described which being deformation based can readily accept size dependent stress-strain
relationships.

SIZE DEPENDENT STRAIN

The size dependent component of the strain eyqg can be quantified through the use of shear-
friction theory of initially uncracked concrete.

Shear friction mechanism

The shear-friction mechanism of concrete softening is illustrated in Fig. 1. A circumferential
double wedge a-b-c of length 2L.4g; and at an angle a forms around a cone. The sliding planes a-
b and b-c are initially uncracked and sliding Ayq4g occurs as shown. Furthermore, for sliding to
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occur requires localised crushing at the apex b of the cones. Occasionally for slender prisms,
sliding occurs across a diagonal sliding plane such as G-G which does not require localised
crushing. However, this rarely occurs in the standard prism in which the slenderness p equals 2
and, furthermore, rarely occurs in reinforced concrete members, so this case will not be
considered.

The natural angle of the sliding plane, that is when the end restraints of the platen and
base do not affect the angle of the wedge a in Fig. 1 depends on the Mohr-Coulomb frictional
component of concrete (Mohamed Ali M.S. et al 2010). Tests have shown (Balmer et al. 1949;
Mattock 1974; Cusson and Paultre 1995; Rutland and Wang 1997; Harmon et al. 1998; Gebran
and Mazen 2009; Mohamed Ali M.S. et al 2010) that for normal concrete this natural angle anat
is about 26° that is Lwag is very close to dp.. Hence the natural angle of the wedge at 26° can
occur in prisms in which Ly, is greater than or equal to 2d,,, that is the angle of the wedge
remains constant when

p=2 (3)

Hence the standard compression cylinder test in which the height of the prism is twice the
diameter and prisms with greater slenderness as in Fig. 1 allow for the natural angle of the
wedge a,,t to occur. In contrast, the end restraints in compressive cube tests in which u =1 do
not allow wedges to form at o, (26°) but force a to be 45° (Domone and lllston 2001). Hence,
the effective strain eyqg from cube tests will be different from those measured from standard
cylinder tests and in cylinder tests in which p exceeds 2.

For a fixed angle a in Fig. 1, from equilibrium there is a direct relationship between the
axial stress oay, the normal stress to the sliding plane o, and the shear stress along the sliding
planes t. (Visintin et al 2012a; Visintin et al 2012b). The shear-friction material properties
guantify the relationship across a potential initially uncracked sliding plane between: the shear
stress t.; normal stress og; crack width he; and sliding along the plane A, which is also shown
in Fig. 1 as Awgg (Haskett et al 2010; Haskett et al 2011). Hence shear-friction material
properties can be used to quantify A4z and consequently Hyq4; and consequently g4z (Visintin
et al 2012a; Visintin et al 2012b). For example, this could be used to quantify the behaviour of
cubes in which a is 45° but this would be of no use in the analysis of RC members where a,t, at
about 26°, occurs. However all prisms with the slenderness in Eq. 3 have the same natural angle
of wedge so that the relationship between 0.y, Ocr, Ter, Acr and Hygg is the same in all of these
prisms. Hence they will have the same relationship between o, and €,4g. This could be derived
from shear-friction material properties (Haskett et al 2010; Haskett et al 2011; Visintin et al
2012a; Visintin et al 2012b) or directly from the test results themselves as follows.

Size dependent strain
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The axial contraction of the prism (Day)n in Fig. 1 when the n" value of stress (0ax)nis applied is
due to the axial contraction of the concrete material (Dmat)n and the axial contraction due to
sliding of the wedges (Dwgg)n, that is

(Dax)n = Dmat)n + (Dwag) (4)
such that

(Dax)n = (2axgt), Lpr (5)
and in which

(Dinatdn = (gmat)anr (6)

where (gmat)n is the material strain in the concrete, that is the stress (o), divided by the
material secant modulus for that stress (E.), and where

(Dwdg)n = Z(deg)n (7)

Substituting Eqs. 5-7 into Eq. 4 gives

Z(deg)n = ((Eaxgl)n - (Smat)n) Ly (8)

Hence for a prism of length L,..1 and subjected to an axial stress (0.x)» which produces a material
strain (gmat)n, the contraction due to sliding in a wedge is given by

Z(deg—l)n = ((saxgl—l)n - (gmat)n) (Lpr—l) (9)

Similarly for a prism with a different length L.,

Z(deg—z)n = ((Saxgl—z)n - (gmat)n) (Lpr—z) (10)
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However from shear-friction material properties as described in the previous section, for the
same axial stress (0ax)n and the same angle of wedge anat, the slip across the sliding plane (Awdg)n
and consequently the contraction due to sliding 2(Hwag)n is the same. Hence equating Egs. 9 and
10 gives the size dependent global strain

(gaxgl—z)n = ((gaxgl—l)n - (‘gmat)n)zpLl + (Emat)n (11)

pr-2

Equation 11 is shown diagrammatically in Fig. 2 for the stress level (o). The number in
brackets is the size factor n in Eq. 2 that is Lyr-1/Ler-2 Which also occurs in Eq. 11. The stress-strain
curve marked (n = 1) can be considered to be the test result of a prism of a specific length Lyr1
which could be of a standard cylinder of 200 mm and, importantly, in which the slenderness in
Eg. 3 applies. At the stress level (0a)n, the material strain is (€mat)n; in this figure we have
assumed that the material stress-strain is linear elastic with a modulus of E. but this property
could have been measured with the strain gauges in Fig. 1. The global strain in the ascending
branch is [(€axgi-1)nlasc and that in the descending branch [(€axgi-1)n]des-

Oax .
A ascending
material branch
property
fool——-—-—- _ descending
. branch
(cyax)n _______________________
(Tak[~ bl (n=1/4)  (n=12 , _1-—-_-______‘;3/_2___
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Fig. 2 Size dependent 0ax-Eaxgl
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The test results labelled (n = 1) in Fig.2 can be used in Eq. 11 to plot the stress-strain
relationships for different lengths of prism L,.,. For example, doubling the length of the prism
from 200 mm to 400 mm gives the curve marked (n = 1/2) which has a reduced ductility but the
same strength f.,. Doubling the length of the prism again to 800 mm gives the curve marked (n
= 1/4) with a further reduction in ductility and which shows the classical snap-back condition
which is known to occur in tests. In contrast, reducing the length of the prism by a third, that is
from 200 mm to 133 mm, produces the curve marked (n = 1%) where the ductility increases;
bearing in mind that the width of the prism must be less than or equal to 133/2 to satisfy Eq. 3.

The behaviour given by Eq. 11 is further illustrated at the stress level (0a)x in Fig. 2. At
this stress level, all the specimens have the same material strain (gmat)x and the specimen
labelled (n = 1) has an effective strain due to sliding (€wdg)x-1 Which is shown as x. When the
prism is doubled in length from n = 1 to n = %, then the effective strain due to the wedge halves
to x/2 as shown. A further doubling of the prism length halves the effective strain due to wedge
sliding to x/4 as shown. It can be seen that it is only necessary to test one specific size of
specimen in which the slenderness is greater or equal to two (Eq. 3) to obtain the size-
dependent strain-strain relationship of the concrete for any size of prism.

Comparison with test results

Jansen et al (1997) tested prisms which satisfied the slenderness requirement of Eqg. 3 that is p
> 2, which ensures that the wedges occur throughout at their natural angle anat. The results of
these tests are summarised in Table 1 in the Appendix. There is a group of 13 results in which
the peak strength averaged 48 MPa and these are plotted in Fig. 3 as Exp.; the ordinate has
been non-dimensionalised in terms of the strength of the specimen f,. The slenderness p
ranged from 2 to 5.5 and the prism lengths L, ranged from 200 mm to 550 mm.
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Fig. 3 Jansen (1997) 48 MPa series

Any of the experimental results in Fig. 3 can be used as a base line for calculating the size-
dependent stress-strain relationships using Eq. 11. Let us use the experimental results for p = 2
as the base line as this is the standard cylinder test of a 200 mm prism of diameter 100 mm. For
this base line, for Eq. 11 and for the n'" stress level: Lor-1is fixed at 200 mm; Lyr2is the length of
prism length for which the size-dependent stress-strain relationship is being determined; €mqt is
the material strain using the experimentally derived moduli in Table 1; €441 is the strain in the
200 mm prism determined experimentally; and €.-2 is the theoretical strain for the prism of
length Lyr,. Using Eq. 11, the theoretical size-dependent stress-strain relationships have been
plotted in Fig. 3 as Theo. It can be seen that there is good correlation with the experimental
results and in particular with regard to the shapes of the curves.

From Table 1, Jansen et al (1997) also tested a group of tests in which the strengths
averaged 90 MPa and these are shown in Fig. 4, and Shanga and Dhir (1997) tested specimens
with an average strength of 41 MPa which are shown in Fig. 5. These results have been
analysed as above using the base lines at u = 2. Once again there is good correlation.
Furthermore, it can be seen in Fig. 4 that the theoretical results can also simulate snap-back.
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Fig. 5 Sangha and Dhir (1972) 41 MPa series

The implication of this research is that the stress-strain relationship for prisms of any size can

be obtained from testing only one size of specimen in which the slenderness is greater than or

equal to 2 (Eq.1) and in which the total deformation D,y in Fig. 1 and consequently global strain
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(Eaxgr) is measured. This provides an additional technique for not only refining existing stress-
strain models but of reducing the amount of experimental research required in developing new
types of concrete such as those which use oil palm kernels for aggregate and steel and polymer
fibre concrete.

GENERIC SIZE DEPENDENT STRESS-STRAIN

Deriving the size-dependent stress-strain relationship directly from tests as described above is
probably the most efficient and accurate method of determining the size-dependent stress-
strain relationship for a specific concrete mix. The alternative is to develop a generic stress-
strain relationship for use in analysis and design which is the subject of this section.

Strain at peak stress (£.,)

It is accepted practice (Wee et al 1996; Tasdemir et al 1998; Shah et al 1985; Popovics 1973;
Tadros 1970; Carreira and Chu 1985; Ros 1950; Nicolo et al 1994; Attard and Setunge 1996) that
the main parameters that control the stress-strain relationship of unconfined concrete are the
secant modulus E. and the strain g, at the peak stress f., as shown in Fig. 2. Out of a total of
855 published test results, 475 had to be discarded (Ansari and Li 1998; Assa et al 2001; Benzaid
et al. 2010; Berthet et al 2005; Bischoff and Perry 1995; Carrasquillo et al 1981; Dilger et al
1984; Imran and Pantazopoulou 1996; Lu and Hsu 2006; Jiang and Teng 2007; Karabinis and
Rousakis 2002; Kshirsagar 2000; Matthys et al 2005; Markeset and Hillerborg 1995; Pessiki et al
2001; Ramesh et al 2003; Richart et al 1928; Richart et al 1929; Rokugo and Koyanagi 1992;
Nanni and Bradford 1995; Toutanji 1999; Shahawy et al. 2000; Shehata et al 2002; Silva and
Rodrigues 2006; Smith and Young 1956; Van Mier et al. 1997; Vonk 1992; Watstein 1953; Xiao
and Wu 2000; Xiao et al 2010; Youssef et al. 2006; Zhang and Gjorv 1991) mainly because: the
global strain €., had not been measured; or the slenderness requirement of Eq. 3 did not
apply; and in the remainder the strains had not been reported. The remaining 380 results
(Lahlou et al 1992; Jansen et al 1995; Jansen and Shah 1997; Amir 1996; Ahmad and Shah 1982;
Sangha and Dhir 1972; Sfer et al 2002; Xie et al 1995; Candappa et al 2001; Gardener 1969;
Attard and Setunge 1996; Ahmad and Shah 1985; Wee et al 1996; Wang et al 1978;) are listed
in Table 1: where No. in Column 2 is the number in the group of tests in which the mean result
is given; occasionally the modulus E. was not recorded or could not be extracted from the test
results in which case E. is estimated using that recommended by the ACI (363R-92) and this is
shown as an asterisk in Column 8 in Table 1.

From Eq. 11, the global strain €, is size dependent, that is it depends on the size factor
n in Eq. 2. Hence to remove the scatter due to size-dependency, all of the results in Table 1
were converted to a specimen size of 200 mm; any size could have been chosen but this is the
most common. To do this, Eq. 11 can be written in the form

(Saxgl—ZOO)n = ((Saxgl—test)n - (Smat)n) Z)::Zs(: + (Smat)n (12)
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where for the n™" stress level Eaxgl-2001S the predicted global strain in a specimen of length 200
MM, Eaxgl-test IS the measured global strain in the test, Lyrtestis the length of the test specimen
and Lyra00is the length to be converted to, which in this case is 200 mm. Equation 12 applies at
all stress levels. However, for the specific strain €., at the peak stress f.,, Eq. 12 can be written
as

_ fco Lpr—test fco
€co-200 = (gco—test - E_c 200 + E_c (13)

where €200 is the global strain at the peak stress f., when adjusted to a specimen of length
200 mm, €eotest is the measured global strain at the peak stress in the test. Hence the test
results can be converted to that of a 200 mm specimen using Eq. 13 and these converted
strains are shown in Column 9 in Table 1 as €.5-200.

To determine the effect of the variation in size only, the results €..,00in Table 1 in which
the size was varied or in which the prism size was not 200 mm were used in Fig. 6. A linear
regression analysis has been plotted which has a coefficient of variation of 0.158. The
unadjusted results €., for the same tests in Table 1 are analysed in Fig. 7 and this has a
coefficient of variation of 0.219. Hence without the size-effect adjustment from Eq. 13, the
scatter has increased by 39% which would suggest that the size-dependent adjustment has had
a major positive influence.

€ 0-200

Fig. 6 €c0200 fOr specimens with varying size
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To determine the best relationship between €400 and fe,, all the results from Table 1
were analysed in Fig. 8 which gave the linear regression

€co—200 = 4.76 X 1075f,, + 2.13 x 1073 (14)

where the stress is measured in MPa and which has a coefficient of variation of 0.140. The
unadjusted values €., in Column 7 are shown in Fig. 9 in which the linear regression analysis
gave

€co = 1.74 X 1076f,, + 2.41 x 1073 (15)

where the stress is in MPa and the coefficient of variation was 0.176 that is 26% larger than
that of the adjusted results from Eqg. 14. It can be seen by comparing Egs. 14 and 15 that
adjusting g, for size has significantly increased the slope of the regression. It may also be worth
bearing in mind that the regression analyses in Figs. 8 and 9 allowed for the fact that some of
the results plotted are the mean of a group (Column 2 in Table 1), as opposed to an individual
result, and therefore have a higher weighting.

Published variations of the unadjusted strains €, with f, are also plotted in Fig. 9 which
helps to emphasise the large scatter associated with the unadjusted raw data associated with
€.0. However, these published variations are also plotted with the adjusted strains €¢,.2q0 in Fig.
8 and the trends are reasonably close.
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The scatter of the adjusted results in Fig. 8, even though it has been substantially reduced by
the size dependent factor from that in Fig. 9, is still quite large. It is suggested that a part of this
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scatter is due to the difficulty of measuring the global stress-strain relationship particularly at
the onset of the descending branch when controlling the rig is difficult. Furthermore, it is felt
that a major component of the error is the omission of the parameters that affect the shear-
friction properties. Currently it is assumed that the stress-strain relationship is only a function
of the concrete strength. However the behaviour along a sliding plane as in Fig. lis also
controlled by the shear friction properties which depend on the aggregate size and the strength
of the aggregate (Bazant 1984; Kim and Eo 1990) and it is felt that if this was taken into
account it would further reduce the scatter.

Generic stress-strain unconfined concrete

Good curve fits to the stress-strain relationship (Sargin et al 1971; Attard and Setunge 1996;
Assa et al 2001; Hognested 1951; Kent and Park 1971; Saatcioglu and Razvi 1992; Mendis et al
2000; Popovics 1973; Mander et al 1988; Wee et al 1996) already exist. We will assume that
these apply to 200 mm cylinders as this is a common specimen size. As an example, let us
consider that by Popovics (1973) which can be written in the form:

((Eax)pop)r
€c0—200

_1+((€ax)pop)r

€co—-200

(Oax) = feo (16)

Where (gax)p0p is the strain in Popovics’ expression, r is a factor which controls the ductility of
the concrete and is given by r=E¢/[E—(f co/€co-200)] and €co-200is the strain given by Eq. 14 as we
are assuming the expression came from tests on cylinders of length 200 mm. Hence Eq. 16 can
be used to plot the stress-strain relationship for a 200 mm cylinder such as that for n = 1 in Fig.
2. This may be considered to be a test result which can then be used to derive the stress-strain
relationship for any size of specimen using Eq. 11 in the following form.

200

Eaxgl = ((Eax)pop - Smat) L_pr + Emat (17)

This procedure has previously been described in deriving the size dependent stress-strain
relationships in Fig. 2 such as the curve (n = %) from the curve (n=1). All that is being done is the
replacement of the test result at n=1 by Popovics’ variation. Hence the size-dependent factor n
in Eq. 2 can be easily incorporated into existing stress-strain relationships for use in member
analyses as follows.

DEFORMATION BASED ANALYSIS
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In order to incorporate a size-dependent stress-strain relationship, a size dependent member
analysis is required. As the moment-curvature approach is strain based, it is not size dependent
and, consequently, cannot incorporate the effects of size due to the mechanisms of tension-
stiffening and concrete softening (Oehlers 2010; Oehlers et al 2011a; Oehlers et al 2011b;
Oehlers et al 2012a). In contrast, a moment-rotation approach (Visintin et al 2012a; Visintin et
al 2012b; Visintin et al 2012c) first proposed by Bachman (1970) is deformation based and
consequently size dependent and can, therefore, incorporate the mechanics of size into the
analysis.

The moment-rotation mechanism is illustrated in Fig. 10. A segment of length L is
subjected to a constant moment region as shown. A wedge can form anywhere within the
segment but for convenience of explanation it will be shown symmetrical about the centre line,
so that the left hand side of length Lger is the mirror image of the right hand side such that Lges is
equal to half Lyg. Both ends of the segment are subject to an Euler-Bernoulli deformation, plane
sections remaining plane; this causes a rotation 8 so that the deformation, shown shaded,
depends on the length of the segment Lges that is it is size dependent. Prior to concrete
softening, Lq4er can be any size and it is convenient, but not essential, to choose a length which is
a multiple of the crack spacing S, (Visintin et al 2112a; Visintin et al 2012b).

2 2 "
“%;’
tension
2 @ @ stiffening
prism
| I ‘ |

Fig. 10 Deformation based mechanism

Let us now consider the inclusion of softening. As described previously, the natural angle of the
wedge a,.: can be determined from shear-friction properties and is about 26° for normal
concrete. Hence the length of the wedge Lygg is approximately hn./tanans: where hy, is the
neutral axis depth. It is important to ensure that the chosen segment length Lyt is greater than
Lwag When it is intended to include the softening mechanism.

If a constant moment region is being analysed, then 2Lger in Fig. 10 is equal to the width
of the constant moment region just as long as this exceeds 2L,qg. If on the other hand a variable
moment region is being analysed as in Fig. 11, then part of the region a-b of length Lges must
include the wedge and consequently be assumed to be a constant moment region and
remainder c-d a variable moment region. As the distribution of moment shown shaded as a-b-c
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overestimates the applied moment and consequently leads to a greater rotation, this can be
considered to be a conservative approach. The conservatism can be reduced by making Lges as
small as possible that is close to Lygg.

applied
moment

Fig. 11 Variable moment region

The deformation based analysis is shown in Fig. 12. The imposed deformations in Fig. 12(b) can
be divided by Lges to get the strain distribution in Fig. 12(c). In the tension region, the force in
the reinforcement can be derived from the strain distribution which is exactly the same
approach as the strain based moment-curvature approach and, hence, ignores tension-
stiffening. Alternatively, tension-stiffening can be included by deriving the force in the
reinforcement through the partial-interaction analysis of the tension-stiffening prism in Fig.
12(b) (Haskett et al 2009; Haskett et al 2009b; Haskett et al 2009¢; Mohamed Ali, M.S. 2012).

—to-o-o—

{-
tension
stiffening
prism

Fig. 12 Deformation based analysis

In the compression region in Fig. 12, the wedge mechanism is automatically accounted for by
using a size-dependent stress-strain relationship which depends on the length of the segment
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Leer. From the segmental analysis in Fig. 10, Lger is Lseg/2 Which is equivalent to L,./2. Hence Eq.
14 which applies when the prism length is 200 mm, such that Lges is 100 mm, can be written as

(SCO)Ldef=100 =476 x 107°f,, + 2.13 x 1073 (18)

and Eq. 17 can be written as

(Eaxgl) = ((Eax)pop - gmat)%

ef)mem

+ Emar (19)

where the units are in N and mm.

It can be seen in Fig. 12 that the components (c), (d) and (e) of the deformation based
analysis are exactly the same as the standard moment-curvature analysis except that the
concrete compressive properties are now size-dependent. The analysis in Fig. 12 can be used to
derive the variation of the moment-rotation as in Fig. 13(a), which are derived using the stress-
strain relationships for 25, 50, 75 and 100MPa concrete as in Figure 14 using Egs. 16 and 17.
The moment-rotation relationships can then be converted to moment-curvature by dividing the
rotation by Lges as in Fig. 13(b) which can then be used to derive the variation in the flexural
rigidity EI with moment as in Fig. 13(c). These results can then be used to analyse a member
over its full length (Oehlers et al 2012b) that is not only in the softening region a-c in Fig. 11 but
also in the rest of the member such as along c-d in Fig. 11.

12 12 12

10 10 10

oo
(e ]
(e ]

Moment (kNm)
[«

Moment (kNm)
[«

Moment (kNm)
[«2)

O L 1 L L
0 0.02 0.04 0.06 0 2 4 6
Rotation (rad) cdurvature (mm'1) X 10-4

25 MPa concrete 50 MPa concrete - - - - 75 MPa concrete — - 100 MPa concrete

Fig. 13 Outputs from deformation analysis
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Figure 14 Stress strain relationships for deformation analysis

The method of deformation in the concrete compression zone of depth h,, in Fig. 10 can be
visualised as follows. As the rotation O is increased in Fig. 10, the concrete in compression
follows the path a-b in Fig. 2. Over this region a-b, the deformation of the concrete is governed
purely by its material properties so that the results of the analyses in Fig. 13 are size
independent, that is the variation in both curvature and flexural rigidity are independent of the
chosen Lyet.

Let us now increase the rotation in Fig. 12(b) so that parts of the concrete in
compression follows the path b-d-e in Fig. 2. If the concrete in compression with stresses
greater than that at b remains elastic so that the concrete material properties follow the path
b-c, then all of the deformation between b-c and b-d-e is due to micro-cracking during the
formation of the wedge. In this case, the results of the analyses in Fig. 13 would be size-
dependent, that is dependent of the chosen Lge. In contrast, if the concrete material properties
followed the path b-d-e in Fig. 2, that is if the strain-gauges in Fig. 1 followed the path a-b-d-e in
Fig. 2, then there is no difference between the total deformation and that due to the material,
so that the curvatures and flexural rigidities in Figs. Fig. 13 are independent of Lges. On further
application of rotation 8, the compressive concrete follows the path e-f in Fig. 2 where major
sliding of the wedges occur and in which the results in Fig. 13 are certainly size-dependent that

is dependent on Lges.

The moment-rotation (M/0) results in Fig. 13(a) are always size dependent but whilst
the compressive concrete is governed purely by its material properties the conversion of the
moment-rotation to moment-curvature and consequently moment-flexural rigidity is size
independent (Visintin et al. 2012b). Any softening, whether in the ascending or descending
branches, will make the results size dependent. In analyses, it is convenient to have results that
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are size-independent as they can be used at any position of a member particularly whilst the
concrete follows the ascending branch in Fig. 2. The non-linearity b-d-e in Fig. 2 has been
exaggerated to illustrate the size-dependent conversion. In reality, the non-linearity in the
ascending branch is an order of magnitude smaller than that in the descending branch as can be
seen in Figs. 3-5. Hence, the effect is relatively minor compared with that of the descending
branch and it may be more convenient in the analyses just to assume that the non-linearity b-d-
e in Fig. 2 is purely due to material properties. It is felt that further experimental research
similar to that of Kotsovos (1983), Van Mier (1986a) and Jansen et al (1995) is required to
determine how much of the non-linearity b-d-e in Fig. 2 is due to material non-linearity, that is
as measured by strain gauges at discrete positions and well away from the sliding zones as in
Fig. 1, and how much is due to softening due to wedge formation to further refine the inputs
into this theoretical model.

SUMMARY

Under compression, concrete contracts under material straining €na: and also contracts due to
the shear-friction mechanism of wedge sliding which produces an effective strain gyqg. The
effective strain eyqg is both size and shape dependent; that is the effective strain varies if the
shape L,/dp is fixed and L, is varied and vice versa. To quantify €yqg through the material
testing of prisms, it is necessary to measure the total contraction g,y in prisms in which Ly/dp,
is greater than or equal to 2 to ensure that the natural formation of the wedge in the prism is
the same as that in an RC member. From this approach, the size-dependent stress-strain
relationship can be derived: from tests on prisms of one length; and also from published stress-
strain curves. These size-dependent stress-strain relationships can be used in a size-dependent
moment-rotation analysis to quantify the variation in curvature and flexural-rigidity at all levels
of loading for the analysis of RC flexural members.

Allowing for both size and shape, 855 published test results were reanalysed to obtain
the relationship between g, and f,. It was found that allowing for both shape and size
substantially reduced the scatter. However it is felt that a further reduction in scatter could be
achieved if the parameters that affect the shear-friction behaviour, such as the aggregate size
and strength, were also catered for. It is also suggested that further experimental research is
required in quantifying softening in the ascending branch.

The major outcome of this research is the ability to develop the size-dependent stress-
strain relationships from one size of prism test. This should help in refining existing stress-strain
models as well as reduce the cost of deriving stress-strain models for new types of concrete
such as steel or polymer fibre concrete or concretes that do not use stone based aggregates
such as the use of oil palm kernel. Furthermore, the ability to use these size-dependent stress-
strain relationships in size-dependent deformation based analyses should speed up the
development of simple design rules for both flexural strength and ductility.

NOTATION
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Dax axial deformation of a prism

dor width of prism or cylinder

Exp. experimental

E. concrete modulus; secant modulus when non-linear

El flexural rigidity; secant stiffness of M/ x

F force profile

feo peak stress; concrete strength

her widening of shear-friction sliding plane

Hwdg axial component of Ayqgg

hna depth of neutral axis

Lgef deformation length in M/ 8 analysis; Lseg/2

Lor length of prism or cylinder

Lor-1 length of prism 1; length of standard prism

Lor2 length of prism 2; length of non-standard prism

Lseg segment length in deformation based analysis

Lwdg axial length of wedge

M moment

M/ 6 moment rotation analysis; deformation based analysis

M/ x moment curvature analysis; strain based analysis

No. number of tests in a group from which mean values determined
P axial load

Ser crack spacing

Theo. theoretical

a angle of wedge sliding plane to the axis

Olnat natural angle of a; o when wedge unrestricted by end restraints; about 26°
6 deformation profile; axial deformation

6t 6 at top surface

Ay slip along the shear-friction sliding plane

Awgg slip along the wedge interface that is A,

€ strain profile

Eaxgl global axial strain; total strain due to material contraction and wedge sliding
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[(€axg-1)nldes  Eaxgl iN descending branch of prism 1 at n" stress level
[(Eaxgi-1)nlasc  Eaxgl iN @scending branch of prism 1 at n" stress level

(Eax)pop axial strain in Popovics’ expression

€axlc local axial strain; local strains as measured by strain gauges
€co strain at fe,

€mat material strain; strain due to material contraction
(Emat)n Emat at Ny, stress level

(emat)x €mat at stress level x

Ewdg effective strain due to wedge sliding; 2Hwgg/Lor

n ratio of prism or cylinder lengths; Lor-1/Lpr-2

0 rotation

I slenderness ratio; Ly./dpr; prism slenderness

o] stress profile

Oax axial stress; longitudinal stress

(Oax)n n™ level of axial stress

(Oax)x axial stress x

Ocr normal stress to shear-friction sliding plane

Ter shear stress along shear-friction sliding plane

X curvature
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APPENDIX:

TEST DATA
Table 1. Prism tests with p > 2
d L f £ E €co-
Ref. No- | (emm) | (mm) | * | (vpa) | 06) | (GPa) | %)
2 46 027 |25 |o027
Lahlou et al (1992) 2 100 |200 |2 [78 032 |34 |o032
2 113|031 |43 o031
3 383 |0.184 | 302 |0.184
3 394 | 018 |302 |0.18
3 405 |0.18 |302 |o0.18
5 59 0222 | 341 |0222
3 100 |200 |2 [e1 0.224 | 341 | 0.224
3 64 0.226 | 341 | 0.226
3 938 | 0.295 | 35.7 | 0.295
Jansen et al (1995) 5 96.7 0.298 | 35.7 | 0.298
3 99.6 | 0302 | 35.7 | 0.302
3 | 762 | 1524 345 | 0177|294 | 0.163
3 | 152.4 | 304.8 345 | 0.158 | 29.8 | 0.180
3 [762 [1524] ) [e2 0224 | 33 | 0215
2 | 1524 | 3048 62 0191 | 36 | 0.201
5 | 762 | 1524 103.4 | 0.299 | 353 | 0.298
4 | 1524 | 3048 103.4 | 0232 | 39.8 | 022
1 200 |2 | 428 |0216 275 | 0216
1 200 |2 |556 | 0248|294 |0.248
1 250 | 25| 441 | 022128 | 0237
1 250 | 2.5 | 554 | 0.247 | 299 | 0.262
1 300 |3 |501 | 0226296 |0.254
1 300 |3 |457 | 0217|288 | 0.246
1 350 |35 |5L4 | 0223|297 |0.260
1 350 |35 431 | 0.196 | 298 | 0.235
1 400 |4 | 468 |0.199 | 303 | 0.244
1 450 | 45 | 46.7 | 0.199 | 30.9 | 0.259
1 450 | 45 | 47.7 | 0.209 | 304 | 0.274
1 550 |55 458 |0.192 |31.1 | 0.270
1 550 |55 |454 | 019 |309 | 0.265
Jansen and Shah (1997) == 100 =015 "17959™ [0.286 | 36.8 | 0.286
1 200 |2 | 931 | 0297357 |0.297
1 250 | 2.5 |885 | 0274|373 | 0.283
1 250 | 25| 881 | 0269|375 | 0278
1 300 |3 |932 | 0284|375 |0302
1 300 |3 |908 | 0281|376 |o0301
1 350 |35 901 | 0268|387 |0.294
1 350 | 35926 | 0277|389 | 0306
1 400 |4 | 882 |0259 389 |0291
1 450 | 45 | 886 | 0.268 | 383 | 0314
1 450 | 45 | 91 0.266 | 39.6 | 0.311
1 550 |55 |90 0.262 | 39.5 | 0.322
1 550 | 55]90.1 | 0263397 | 0326
, 1 308 |0.205 | 253 | 0.249
Amir (1996) 1|12 | 30% 12 350 T0246 | 259 | 0308
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Table 1. Prism tests with > 2 continued

d L f £ E €co-
Ref. No- | imm) | mm) | | vpa) | 6) | (GPa) | (%)
3 3048 |4 [207 o021 |22 0.268
4 26.2 021 |23.9 |o0.185
4 316 | 0.27 27.3: 0.200
4 379 [022 [308 [o0230
Ahmad and Shah (1982) 4 762 | 1s04 |2 [396 |030 |338 |0273
3 51.7 |[0.25 |309 |o0.230
4 522 |0.25 [27.8 |o0.260
3 65.5 030 |256 |0.233
6 101.6 |2 |415 0341 | 283" | 0.245
Sangha and Dhir (1972) 6 50.8 | 127 25414 0345 | 283 [0273
6 152.4 |3 |41 0.343 | 282" | 0.296
1 328 |0.18 [273 0207
Sfer et al (2002) N 150 300 2 aee Toai 1286 o245
3 60.2 | 029 [32.7 |0.29
Xie et al (1995) 3 100 200 2 [9221 |03 389 |03
3 119 036 |432° |o0.36
2 40 0.24 28.2: 0.24
2 60 024 |328 |o0.24
Candappa et al (1999/2001) > 100 200 2 = 025 TN 0.25
2 101 027 |40.7 |o027
1 40.2 036 |280 |0.306
Gardener (1969) 1 762 |152.4 |2 [368 036 |270 |o0310
1 36 037 |26.8 |0.313
1 120 0.3 557 |03
1 120 028 |528 o028
1 110 028 |554 |o0.28
1 100 027 |529 |o027
1 132 034 |493 |o0.34
Attard and Setunge (1996) 1 100 200 2 126 0.34 49.4 0.34
1 118 028 |578 |o0.28
1 110 028 |587 |o0.28
1 100 026 |546 |0.26
1 9% 028 |55.8 |0.28
1 60 021 |451 o021
4 762 | 152.4 4813 | 0.26 [30.0 |o0.236
4 762 | 152.4 5254 |0.29 |31.0 |O0.261
3 762 | 152.4 373 [023 [27.27 [o0.208
2 152.4 | 304.8 29.65 |0.18 | 250 |O0.212
3 762 | 152.4 3792 023 [27.3 [o0.208
3 762 | 152.4 431 | 0.25 28.7: 0.226
3 762 | 152.4 438 | 028 |289 |0.249
Ahmad and Shah (1985) 4 762 | 1524 | > [3958 | 031 |27.8 | 0226
4 762 | 1524 5171 | 035 |308 |0.307
3 762 | 152.4 3165 |0.27 | 256 |0.235
2 152.4 | 304.8 29.79 | 024 |250 |0.303
3 762 | 152.4 37.23 [0.27 [27.2° [o0.238
3 762 | 152.4 3696 | 029 |27.1 |0.253
3 762 | 152.4 3654 |0.32 |27.0 |o0.276
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Table 1. Prism tests with u > 2 continued

d L f € E €co-
Ref No- | mm) | (mm) | M | (Mpa) | (%) | (GPa) | (%)
12 427 [0212]376 |0.212
5 63.2 | 0216 | 41.8 | 0.216

5 702 |o021 |43 0.21
5 65.1 | 0.216 | 415 | 0.216
3 70.5 | 0.206 | 40.4 | 0.206
5 69.7 | 0212|415 |0.212
3 715 |0.213 ] 414 |0.213
5 63.6 | 0.228 | 426 | 0.228
5 85.9 | 0.226 | 45 0.226
5 90.2 [ 0243|444 |0.243
5 783 [0.232]443 |0.232
5 859 | 0231443 |0.231
5 81.2 | 0224|439 |o0.224
3 88.1 | 0227|445 |0.227
5 81.6 | 0.211]43.8 |0.211
3 82.6 | 0216|442 |0.216
5 84.8 [ 0252472 |0.252
5 85.6 | 0232|456 |0.232
5 96.2 | 0237|466 |0.237

Weeetal (1996) |2 |d=100|200 |2 |46.4 [025 [352 |0.25
2 65.8 | 0.237 | 40.8 | 0.237
2 739 [ 0243 ] 416 |0.243
2 87.6 | 0243|445 |0.243
2 93.1 | 0244 | 454 | 0.244
2 953 [ 0.242 | 452 |0.242
2 100.6 | 0.258 | 45.8 | 0.258
2 102.1 | 0.256 | 46.1 | 0.256
7 102.8 | 0.247 | 46.7 | 0.247
2 106.3 | 0.251 | 48.4 | 0.251
5 104.2 | 0.249 | 46.3 | 0.249
5 92.8 | 0242|458 |0.242
3 946 | 0228|473 |0.228
5 944 [0229]463 |0.229
3 96.6 | 0232|465 |0.232
5 91.5 | 0.228 | 459 | 0.228
3 936 |0.219]47.1 |0.219
5 91.7 | 0.266 | 46 0.266
5 119.9 | 0.275 | 49.1 | 0.275
5 125.6 | 0.273 | 50.9 | 0.273
1 21 027 |22.17 0232
1 41 029 |282 |o0.256
1 51 0.3 30.6: 0.268
1 74 0.35 | 355 |0.317
Wangetal (1978) (G 762 | 1524 |2 (— 035 Ta5a 0202
1 31 031 | 254 |o0.267
1 385 |032 |275 |o0.282
1 55 0.38 |31.5 |0.332

* estimated
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Chapter 3: Extracting Shear Friction Properties from Cylinder Tests

Introduction

The two papers in Chapter 2 have only used shear friction mechanism, furthermore the
paper of this Chapter, “Concrete shear-friction material properties: derivation from actively
confined compression cylinder tests” shows how to quantify the shear-friction material
properties across potential sliding planes, that is the relationship between the shear stress,
normal stress, crack widening and interface slip across an initially uncracked concrete sliding
plane, from those relatively readily available and inexpensive compression tests. The shear-
friction material properties are then presented in a generic form that is directly applicable
for the papers in Chapter 4. The importance and application of the proposed shear-friction
expressions are also illustrated.
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Chapter 4: Applications of Shear Friction Properties
Introduction

Chapter 4 consists of three papers that show the applications of shear friction properties
proposed in Chapter 3. The first paper shows how these shear-friction material properties
can be used directly to quantify the shear-sliding capacity and also how these shear-friction
material properties can also be used to analyse standard shear-sliding tests in order to
extract more accurate shear-sliding capacities. It is then shown how these shear-sliding
capacities can be used as the failure criteria to quantify the shear capacities of reinforced
concrete beams. The main aim of the first paper is to show that the use of mechanics and
shear-friction material properties can not only quantify apparently diverse behaviours such
as the shear capacity and flexural ductility but also reduce the cost of developing new RC
products and in developing more accurate and less conservative design rules. In the second
paper, two distinct cylinder failure modes have been examined: that of the circumferential
wedge that is common in standard cylinders with aspect ratios of 2:1; and that of the single
sliding plane that occurs at higher aspect ratios. Importantly, from this is shown that
although each mechanism is defined by the same shear friction material properties different
stress strain relationships result and this may explain some of the scatter of test results. In
the third paper, mechanics solutions have been developed to show the influence of
specimen size, that is both diameter and height, on the stress-strain relationship of axially
loaded FRP confined concrete cylindrical specimens using shear friction theory. Due to the
capacities of the testing machines, it is often quite difficult to test large or full-scale FRP
wrapped specimens under pure compression in order to extract their axial-stress/axial-
strain relationships. The third paper shows that through the mechanics of shear friction,
how small scale FRP wrapped specimens suitable for compression testing can be designed
so that the stress/strain relationship of the full scale member under pure compression can
be extracted from those of the small test specimen.
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Simulating the behaviour of FRP confined cylinders using the shear friction
mechanism

Visintin, P., Chen, Y., and Oehlers, D.J.

Abstract

The axial compressive behaviour of concrete confined with FRP has received much attention
over the past two and a half decades, with over 90 empirical and semi-empirical models
developed to predict the compressive stress strain behaviour. While there is no doubt that
in general these models show a good correlation to the dataset from which they were
derived, when applied to a global dataset, accuracy is reduced. In response to the largely
empirical analysis approaches, which should only be applied within the bounds from which
they were developed, a new, mechanics based approach for predicting the axial and lateral
stress strain relationships of concentrically loaded FRP confined cylinders is presented. The
approach uses shear friction theory to simulate the formation and displacement of sliding
planes as concrete softens. It is shown that cylinders can fail through two shear friction
mechanisms, namely, through either the formation of a circumferential wedge, or, a single
sliding plane. Importantly, from this is shown that although each mechanism is defined by
the same shear friction material properties different stress strain relationships result and
this may explain some of the scatter of test results. In this paper the mechanism of a single
sliding plane is derived and compared to that of a circumferential wedge.

Keywords: FRP confinement; shear friction theory; size effect; slenderness effect
Introduction

The axial compressive behaviour of concrete confined with FRP has received much attention
over the past two and a half decades, with extensive testing producing approximately 3000
test results and over 90 axial stress strain models, the majority of which are empirical or
semi-empirical. Despite this large amount of testing, it has been shown that existing
empirical models, when applied to a global dataset, exhibit poor accuracy (Ozbakkaloglu et
al. 2013).

In this paper a new, mechanics based, approach for predicting the axial-stress/axial-strain
(Oax-€ax-gbl) @nd axial-stress/lateral-strain (Oax-€iat-go1) behaviour of FRP confined concentrically
loaded cylinders is presented. This approach uses the shear friction mechanism (Haskett et
al. 2010, 2011; Chen et al. 2013, 2014b; Chen et al. 2014a; Oehlers et al. 2012; Oehlers et al.
2014a, 2014b; Visintin et al. 2012,2013) to describe the sliding displacement along a
concrete to concrete interface. This sliding mechanism is idealised in Figure 1 where 1 is
the shear stress along the sliding plane, A,gg is the relative slip between the adjacent
concrete elements, o, the stress normal to the sliding plane, that is the confinement
applied across the sliding plane, and h, is the relative separation of the adjacent elements
due to shear sliding.
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Figure 1 Shear friction mechanism

In the case of FRP confined specimens, the shear friction mechanism is here applied to
describe the sliding of concrete wedges which are seen in practice. In this paper two types
of concrete wedges, which were observed experimentally, are considered, these are
identified as a circumferential wedge in Figure 2(a) and a single sliding plane in Figure 2(b).
These two failure modes are strongly correlated to the slenderness of the specimen (Chen
et al. 2014a) that is the height to width ratio y, with the circumferential wedge common
when the slenderness ratio u is approximately 2 and the single sliding plane is common
where the slenderness is greater than 2. It must however be emphasised that the single
sliding plane is possible at all slendernesses and it will be shown that it represents a lower
bounds to the strength of an axially loaded specimen.

(a) circumferential wedge (b) single sliding plane
n=2 n=3

Figure 2 circumferential wedge and single sliding plane shear friction mechanisms

The shear friction failure modes shown in Figure 2 are the result of shear sliding along a
plane as idealised in Figure 1 which is a function of the shear friction material properties,
that is the relationship between 1o, Gcr, Awgg and he, as illustrated in Figure 3 (Haskett et al
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2010, 2011). These shear friction material properties are dependent not only on the
concrete compressive strength but also on other parameters such as the aggregate size and
strength and mortar properties and are generic such that once known for a specific mix they
can be applied to either the circumferential wedge or single sliding plane. That is the shear
friction properties in Figure 3 are material properties which control the shear friction sliding
mechanism in Figure 1 and which can be applied to any member size and shape such as the
cylinders in Figure 2 with different slendernesses and sliding plane configurations.

7, (MPa)f

h.(mm)
v 5. (MPa)

Figure 3: Shear friction material properties

In this paper it will first be shown how the shear friction mechanism in Figure 1 can be used
to describe the axial and lateral stress strain behaviour of an actively confined cylinder. The
shear friction mechanism of a single sliding plane will then be derived from the conditions of
compatibility and equilibrium and compared to that already established for a
circumferential wedge (Mohammad Ali et al. 2010; Chen et al. 2014a). The shear friction
mechanism will then be applied to predict the axial stress strain relationships of FRP
passively confined specimens of different diameters and slendernesses tested as part of this
research and it will be shown that the shear friction mechanism can be used to explain some
of the scatter seen experimentally.

Mechanics of softening in FRP confined cylinders

Cylinder softening mechanisms
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(a) Circumferencial wedge (b) Single sliding plane

Figure 4: Compression test on a triaxially confined cylinder

Consider the actively confined cylinders in Figure 4 which are of length L, and diameter d,,
and which are subjected to a uniform axial stress of o, which results in an axial contraction
of Da. On initial loading D, is governed wholly by the material strain O-A in Figure 5. At
point A corresponding to a stress o5 concrete softening commences and the total
deformation is now a function of the material strain O-A-B and some non-material
deformation which takes place along a potential sliding plane at an angle a, where o
depends on the Mohr-Coulomb frictional component of the concrete (Balmer et al. 1949;
Mattock 1974; Jamet et al 1984; Cusson and Paultre 1995; Rutland and Wang 1997; Harmon
et al. 1998; Ansari and Li 1998; Lu and Hsu 2006; Karam and Tabbara 2009; Van Mier and
Man 2009; Mohamed Ali M.S. et al 2010; Roddenberry et al 2011; Visintin et al. 2013).
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Figure 5: Axial stress global axial strain and global lateral strain relationships

The sliding behaviour of a single or circumferential wedge, that is the contraction due to
sliding Hwgg in Figures 4(a) and (b), is independent of specimen length and therefore the
effective axial strain due to sliding €ax.nonmat is size dependent (Chen et al. 2014a; Visintin et
al. 2013). As an example, let us assume that a prism of length L1 has a single sliding plane
as in Figure 4(b) and gives the stress-strain relationship O-A-C-D in Figure 5. The material
strain at (Cax)x iS (€ax-mat)x @s shown and the pseudo-strain due to the contraction due to
sliding Hwgg in Figure 4(b) is Hydg/Lorin Which is shown as (€ax-nonmat)x in Figure 5. Now let us
consider a prism of twice the length Ly, such that Lyri1/Lpriz = Nax = 1/2. At (Gax)x the material
strain will be the same that is €mat-«. The contraction due to sliding Hygg Will also be the same
so that the pseudo strain due to sliding that is Hygg/Lpriz Will be half of that for the prism of
half the length of Lyris that is(€ax-nonmat)x/2 in Figure 5. Hence the stress strain relationship will
be O-A-E-F. Hence the size dependency. The same argument can be made for lateral
dilations due to crack opening and wedge slip (€at-nonmat)x Where, as the ratio of prism
diameter is changed nit=dpr1/dpr2 the effective strain is varied.

The magnitude of the deformation due to sliding can be derived from the shear friction
mechanism and has previously been considered for a circumferential wedge in Chen et al.
(2014a). The mechanics of a single sliding plane as in Figure 4(b) will now be considered.

Shear Friction mechanism of a single sliding plane

Through compatibility, the relationship between the global axial strain €ax.gn and global
lateral strain €jat.gpi in Figure 5 and the wedge slip Awgg and crack separation hcin Figure 4(b)
can be established. For a given global axial strain (€axgbl)xin Figure 5,the proportion of the
contraction arising from the material strain (€axmat)x IS (0ax)x/Ec, Where E.is the material
modulus. Thus the difference between €,xgp1 and €ax-mat is the effective axial strain due to
wedge sliding €ax.nonmat- From Figure 4(b), the slip of the wedge in the axial direction is

Lpr
Awdg: cos a (Sax—gbl - Sax—matLpr) (1)
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Similarly, for a given global lateral strain €,xgpiin Figure 5, the proportion of the total dilation
arising from material strain €ja.mat iS (Oax)n/(Ec/Y) Where y is the material Poisson’s ratio. If the
section is also considered to be subjected to an active lateral confining stress of oc, as in
Figure 4, a contraction of the cross section due to the confining stress is €jat-con = -Ocon/Ec
takes place. Hence the difference between the global lateral strain €jat-go1and the sum of gt
mat aNd Ejat-con is the effective lateral strain due to crack separation, hc, and wedge slip Aygg in
Figure 4(b) which can be expressed as

_ (Awdg sin a+cl(l)csra)
Elat—-nonmat = d (2)
pr

By rearranging Eq. 2, the crack separation is

hCT = (Elat—nonmatdpr - Awdg sin CZ) cosa (3)

Now consider equilibrium along the sliding plane in Figure 4(b), such that a relationship
between the axial stress o, the confining stress o, and the corresponding shear t., and
normal o stresses can be determined. For simplicity of the explanation, a free body
showing the stresses and forces exerted on the sliding plane is shown in Figure 6.

T Y

-
-

Q
o]

con con

!
!

!
!

(a) Stresses (b) Forces

Figure 6: Force equilibrium of a single sliding plane

From horizontal force equilibrium in Figure 6(b)

Foon + Vo sina = Fycosa (4)

where
Ver = TerAsia (5)
Fy = 0crAgiq (6)

in which the area of the elliptical sliding plane Aqq as illustrated in Figure 7(a) is
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s d T
Agig = derﬁ (7)

and dy is the width of the cylinder.

From vertical equilibrium in Figure 6(b)

Fo = Vopcosa + Fysina (8)
where the axial force F,y is
nd,
Fox = Oax 4p (9)

Rearranging Eq. 8 in terms of the normal force across the crack yields

Fax—Vercosa

Fy = P (10)
Substituting Eg. 10 into Eq. 4 and simplifying gives the shear force across the crack

V., = Fccosa — F.,,sina (12)
Further substitution of Eg. 11 into 10 simplifies the expression for the normal force to

Fy = Fysina + F,pcosa (12)

In the above equations of equilibrium, the confining force F., in Figure 6(b) can be
determined through integration of the lateral stress for cross sections through the depth of
the cylindrical wedge. The cylinder wedge, shown in Figure 7(a), is discretised into n sections
through the depth DE in Figure 7(a), where the cross section for each depth is described by
the arc GKH in Figure 7(b).

d(F..)cosp
p
d(F )

d,cota

i" strip Y/2R)

ccccc

Figure 7 : The confinement force Fq,
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For the purposes of determining the integral of the i slice, for example slice KJ in Figure
7(a) which is located x; from the base of the sliding plane, the location x;is given by

xX; = %dprcota (13)

where i/n is the location of the strip as a proportion of the total depth. In Figure 7(b) y;
which is the length of the chord HG can now be expressed as a function of x;

dpr\2  (dpr 2
y; =2 <\/(%) — (% — xl-tana) ) (14)
and substituting Equation 13 into 14, and simplifying gives
— 24 A%
Vi = 2dpy n (;) (15)

Taking line OK in Figure 7(b) as the baseline, the force d(F.n); acting on the shaded element
can be determined by integration of the stresses acting between B and B+dp . Similarly, the

total force acing over segment GKH is the integration of stresses between —arcsin (%) to

arcsin (;’—;) in Figure 7(b), where B is taken as positive for clockwise rotations about

baseline OK.

The direction of the confining force of the shaded element d(Fcn); in Figure 7(b) acts
towards the origin O and by resolution of forces has a horizontal component

dprcota

cosp d(Feon)i = €OSP Ocon Rdp (16)

n

and in Figure 7(b) the total horizontal confining force by integration is

_ arcsin (%) dprcota
(Fcon)i - f—arcsin (%) COSﬁ Ocon n R dﬁ (17)

Which is the equivalent confinement force of the ith strip and substituting Equation 15 into
17 and simplifying yields

dyrcot /i i\?
(Feon)i = Gcon%<2dpr n (;) ) (18)

Finally integrating Eq. 18 throughout the depth of the wedge DE in Figure 7(a) gives the total
confinement force acing over the single sliding plane DC.

_T dpr
Fcon - Zo-con tana dpr (19)

Now substituting Egs. 5, 9 and 19 into Eq. 11 and rearranging, the shear stress along the
shear sliding is

Ter = (Ogx — Ocon) * SINA - cOSQ (20)

and substituting Egs. 6, 9 and 19 into Eq. 12 and rearranging the normal stress along the
sliding plane is

Ocr = Ogy * SIN2QA + 0oy - COS% (21)
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Comparison with circumferential wedge mechanism

From the above analyses for a single sliding plane the shear friction properties are given by
the following equations in which the coefficient n is equal to 1. From research on the
circumferential wedge already developed by Mohammad Ali et al. (2010) and Chen et al.
(2014a) for a circumferential wedge the same equations apply but with the coefficient n
equal to 2.

Lyr

Awdgz ncos a (gax—gbl - eax—mat) (22)
__ (€lat-non-matApr .

hq = — = AyagSina ) cosa (23)

Ter = (Ogx — NOopn) * Sina - cosa (24)

O = Ogy * SIN?a + N0y, * COS%a (25)

Equations 22 to 25 show that if a specimen failed through a single sliding wedge and was
analysed as if it failed through a circumferential wedge then this would give incorrect shear
friction properties. Furthermore it will be shown that if two specimens with identical
concrete and therefore identical shear friction properties were to fail one through a
circumferential wedge and the other through the single sliding plane then different stress-
strain relationships would be derived adding to the overall scatter of results.

Simulating passive confinement using the shear friction mechanism

Let us now simulate passive confinement of a cylinder such as that obtained when a
specimen is wrapped with FRP, that is let us determine the global axial €. and lateral €.
gbl Strains for a given imposed an axial stress o.. To simulate an FRP confined cylinder
requires first the quantification of the confinement through the circumferential strain €jrcum
induced in the FRP.

Circumferential strain in FRP confined cylinder test

In order to determine the circumferential strain €crcum, the final dilated shape of the cylinder
needs to be considered. For dilation due to the circumferential wedge in Figure 4(a), the
material and non-material expansion occurs uniformly around the circumference of the
cylinder. If the lateral dilation of the cylinder is Ad,, then the dilatory strain or lateral global
Strain €patgpi iIs Adyr/dyr. Similarly, the circumferential strain €cireym is T(dpr+Adyr)/md,r Which is
it is also equal to gjat-gpi. From the geometry of sliding Awgg and widening hc, in Figure 4(a) the
circumferential strain due to both material dilation and that due to shear friction is given by

; her
Oax __ 9con—guess Z(AWd.g Sina+cqe a)

Eci = &1qt— = —
circum lat—gbl Ye E. E. dpr

(26)

For the case of the single sliding plane in Figure 4(b), the non-material component of the
dilation is (AwggSina+hc/cosa) which is usually an order of magnitude greater than the
material dilation and occurs only along the major axis. Therefore, the cylinder takes an
elliptical shape where the minor axis is taken as dyr-min Which is the diameter of a cylinder
subjected to only material dilation and confinement, that is,

delps—min = dpr [1 + (Vc GEL!: - 02_(:1)] (27)
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and the major axis is taken as the diameter of a cylinder subjected to material and non-
material dilation as well as confinement, that is,

s h
Oax Ocon Awdg sin a+%
delps—maj = dpr [1 + (VCE_C - E. + ( dpr )>l (28)
The perimeter of the dilated ellipse can then be taken as
dél s—min+dgl s—-maj
Lpr—elps = ﬂJ 5 > £ ! (29)

The change in perimeter gives the circumferential hoop strain and defining the perimeter of
a cylinder as Lorcir

L —L i
_ Lpr—elps—Lpr—cir
Ecircum =~ [ (30)
pr—cir
which is equivalent to
2 2
delps—min+delp5—maj d
2 pT
Ecircum = (31)

dpr

Simulation of FRP confined cylinder test

Having quantified the circumferential strain, the analysis is carried out by guessing a lateral
confinement Ocon-guess COrresponding to the imposed o.cand then checking if Ocon-guess is the
same as the confinement o arising from the shear sliding mechanism. The analysis can be
carried out as follows and can be applied to either of the sliding mechanisms in Figure 4
depending on which is assumed to have occurred.

1. For the given imposed o.xand guessed Ocon-guessin Figure 4, the shear stress 1, and
normal stress o, across the potential sliding plane can be determined from the
equilibrium Egns. 24 and 25.

2. For the now known 1, and o the corresponding slip of the wedge Ayqg can be
determined from the shear friction properties in Figure 3. Which as an example have
been connected by a dashed line.

3. Knowing Ayggand that the axial material strain €axmat = Oax/Ec, the global axial strain
can be determined from compatibility by rearranging Eq. 22, that is

— wdg
Sax—gbl - + €ax-mat (32)

4. From the known A4 and o the crack opening hc in Figure 4 can be determined
from the shear friction properties in Figure 3.

5. The confinement is then given by

Oeon = 2fcircngFRPt (33)
pr
where t is the total thickness of the wrap of modulus Egrp. If 0con does not equal o¢on-

guess the analysis should be repeated with a new ocon-guess until it does.
Application of the shear friction approach

To demonstrate the ability of the shear friction approach to predict the stress strain
behaviour of FRP confined circular sections of different slenderness, a series of tests was
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undertaken on concentrically loaded cylinders. The cylinders had a diameter 150mm and
heights 300mm, 600mm and 900mm and diameter 100mm and height 600mm, and
triplicates of each specimen dimension were tested. The cylinders had an average
compressive strength at the time of testing of 36MPa and were each wrapped with 2 layers
of CFRP with a single layer thickness of 0.117mm and elastic modulus of 240GPa. All
specimens were instrumented with 4 LVDT’s to record total axial deformation.

Material properties for analysis

It is important to note here that any material models may be used for the analysis. The
purpose of this paper is not to suggest the best material models, but rather, to show the
shear friction mechanism for simulating passive confinement. There is no doubt that a
better fit with test results could be achieved over time with further research to improve
material models.

For analysis it is firstly required that the angle at which sliding plane forms in Figure 4 be
known and according to Chen et al. (2013)
a = 26° + 2% x 20° (34)

co

Also required for the analysis are the shear friction properties in Figure 3. As shown by Chen
et al. (2014b), these can be extracted from any standard confined cylinder test or from
material models which predict the confined stress strain relationship of a cylinder. For
analysis, here generic shear friction properties which are only a function of the concrete
strength f. are applied as follows. It should be noted that in order to produce these generic
shear friction models, the stress strain relationship of Popovic (1973) was assumed as well
as the compressive-axial-stress/lateral-strain (0.«/€latg) relationship Teng et al. (2007).

The wedge-slip/shear-stress (Aygg/Ter) relationship is given by:

()
Ter—Tstart __ So

A
Tmax~Tstart r*_1+(";’_‘19)r*
o

(35)

where T is the peak shear stress along sliding plane, as shown in Figure 3 and for a given
normal stress and is given by

Imax — _( 6502 (&)2 +1.104 (%) + 0.1659 (36)

fCD co co

and where Tqart in Figure 3 is the shear stress at the start sliding for a given normal stress
and can be given by

2
Istart _ _ Ocr Ocr
et = —0.4429 ( ) +0.8653 (f) +0.1554 (37)
and s, in Figure 3 is the sliding displacement at tax and is determined by
Ocr 2 Ocr
s, = 0.429 (f—) +0.529 (f—) +0.013 (38)
furthermore r is
fco
P B PYE,
r = C_};CC X T (39)
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The wedge-slip - crack separation relationship is given by

0 0 < A< Sgep
her = k = (40)
(Awdg - Ssep) A= Ssep
where s, as in Figure 3 is the sliding displacement at which crack widening begins and is
given by
2
Ssep _ Oer
2 =14+ 10 (f) (41)
And k is a factor which controls the opening rate of concrete and is given by
Ocr
k = —0.563 (f—) +0.683 (42)

Analysis of test results

A comparison of the experimental and predicted test results is shown in Figure 8. The
analysis has been performed in all cases assuming either a single sliding plane or a
circumferential wedge as in Figure 4 and it can be seen in Figure 8 that a significant variation
in the predicted stress strain relationship results. This difference arising due to the shear
friction mechanisms can therefore help to explain some of the variation seen in
experimental tests. As the circumferential wedge is only likely to form in specimens with an
aspect ratio of approximately 2 it is also suggested that if further empirical research to
define the stress strain relationship of concentrically loaded FRP specimens is required then
it should be performed on larger specimens such that the failure mechanism of a single
sliding plane occurs as this is what is expected in full scale columns.

(a) 150x300 (b) 150x600
80 | | | | 80 | | | |
Cax 1 et T et Cax 1 P L__.—-'wx'"
(MPa) 60 - - - -1 " a2 ----- (MPa) 60 - - -1 o e e
% | | R | |
,.’ | | | S | | |
| | | | | |
40,7 [ - — — - 4077 A |
l l l l l l l l
| | | | | | | |
200 b L e P
l l l l l l l l
| | | | | | | |
0 | | | | 0 | | 1 |
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025
axgl axgl
(c) 150x900 9 (d) 100x600 9
80 | | - | o 100 | | | | |
Cax : _.,-‘r" ,_.:.-'-" ax ool :7777:7‘_{1: B .Q-L,‘,,,: 77777
(MPa) 6o} - - - - R (MPa) P g
s w Do e ‘
P : B0 L
40 77777 T L - — - — — ,"l | | | |
| | | | | | |
| | | 40 B —_-._
| | | | | | | |
| | | | | | | |
o o A 20 -4
| | | | | | | |
| | | | | | | |
0 | | 1 0 | | | | 1
0 0.005 0.01 c 0.015 0.02 0 0.005 0.01 0.015 0.02 0.025 0.03
axgl &
9 Test result axgl

----- Single wedge (Generic SF properties)
- Circumferential wedge (Generic SF properties)

Figure 8: Comparison of experimental and predicted results using generic SF properties
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For the analyses in Figure 8, shear friction properties using the relationship between the
axial and lateral strains proposed by Teng et al. (2007) have been used. As this value has
been estimated and it has been suggested that under some circumstances that it may
provide an upper bounds (Xiao et al 2010), the analysis has been repeated in Figure 9 to
show the influence of varying g by £10%. It should be noted that in Figure 9 only the
mechanism seen in the test is considered, that is a single sliding plane is considered for all
specimens with an aspect ratio greater than 2. Importantly, it can be seen in Figure 9 that a
variation of only £10% in the empirical model of Teng et al. (2007) leads to a significant
change in the predicted result. This suggests that the shear friction approach presented
here captures the mechanism of confinement which occurs in practice but empirical
research is still required to refine material models, most significantly the relationship
between the axial and lateral strain.
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Figure 9: Comparison of experimental and predicted results (Varying €,.¢ by +/- 10%)

Conclusion

A new mechanics based approach to predicting the axial and lateral stress strain
relationships for FRP confined concrete cylinders has been presented. Being mechanics
based, the approach is size and slenderness independent in that it copes automatically with
changes in size and shape and does not need the inclusion of size factors. The approach can
be applied to specimens with any type of concrete or any type of FRP wrap provided the
shear friction properties are known. Experiments conducted as part of the model validation
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process show that specimens with a slenderness ratio greater than 2 typically fail with the
formation of a single sliding plane. The shear friction approach is capable of predicting the
response of specimens failing with either a circumferential wedge or a single sliding plane
and hence can simulate, through mechanics, the dependency of the passively confined
stress strain response on slenderness. It is suggested that as in practice members have a
slenderness ratio greater than two there is a need for empirical research to shift focus to
experiments on slender specimens and in which the total axial deformation is measured.
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Notation

Dax axial deformation of a prism

Dax-mat axial material deformation

Diat transversal deformation of a prism

dor width of prism or cylinder

dor-1 width of prism 1

dor-2 width of prism 2

E. concrete modulus; secant modulus when non-linear
Efrp elastic modulus of FRP

feo peak strength of unconfined concrete

fec peak strength of confined concrete

(Feon)i equivalent confinement force of the jth strip

her crack opening of shear-friction sliding plane

Hwdg axial component of Ayqgg

k a factor which controls the opening rate of concrete
Lor length of prism or cylinder

Lwdg axial length of wedge

Lor-1 length of prism 1

Lor-2 length of prism 2

n number of wedges

r a factor which controls the ductility of the concrete
R radius of circle

So sliding displacement at Trmax

Ssep sliding displacement at just crack widening begins

t total thickness of FRP

Ver shear force along the sliding plane
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a angle of wedge sliding plane to the axis

B integration angle

Dwgg slip along shear-friction sliding plane

Eax-gbl global axial strain; total strain due to material contraction and wedge sliding

€ax-mat material strain; local axial strains as measured by strain gauges

Elat-gbl global transversal strain; total lateral strain due to material expansion and
wedge sliding

€co Eaxgbl at feo

Ecc Eax-gbl At fec

€ax-nonmat axial effective strain due to wedge sliding

€lat-mat transverse material strain; lateral strain due to material expansion

€lat-con transverse contraction strain due to confinement

€lat-nonmat transversal effective strain due to wedge sliding;

Niat lateral size factor; ratio of prism or cylinder width

Nax axial size factor; ratio of prism or cylinder lengths

Y material Poisson ratio

vl slenderness ratio; Lor/dpr; prism slenderness

Oax axial stress; longitudinal stress

Ocon active confinement stress

Ocr normal stress to shear-friction sliding plane

F normal force along the sliding plane

Ter shear stress along shear-friction sliding plane

Trmax peak shear stress along sliding plane for a given normal stress
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Extracting size dependent stress/strain relationships from FRP confined
concrete cylinders for varying diameters and heights

Chen, Y., Visintin, P., and Oehlers, D.J.

1. Abstract

Since most of the available data regarding FRP-confined columns has been generated from
tests on small-scale cylinders, it is important to ensure that the proposed equations are truly
representative of the actual behaviour of full-scale columns. In this paper, mechanics
solutions have been developed to show the influence of specimen size, that is both
diameter and height, on the stress-strain relationship of axially loaded FRP confined
concrete cylindrical specimens using shear friction theory. Two distinct cylinder failure
modes have been examined: that of the circumferential wedge that is common in standard
cylinders with aspect ratios of 2:1; and that of the single sliding plane that occurs at higher
aspect ratios. It is often quite difficult, if not impossible due to the capacities of the testing
machines, to test large or full-scale FRP wrapped specimens under pure compression in
order to extract their axial-stress/axial-strain relationships. It is shown in this paper through
the mechanics of shear friction, how small scale FRP wrapped specimens suitable for
compression testing can be designed so that the stress/strain relationship of the full scale
member under pure compression can be extracted from those of the small test specimen.

Keywords: FRP; FRP confined concrete; passive confinement; axial-stress/axial-strain
relationship; size effect; and shear friction.

2. Introduction

It is widely known (Richart et al 1928 and 1929; Balmer 1949; Gardner 1969; Kotsovos and
Newman 1978 and 1979; Jamet et al 1984; Smith et al 1989; Bellotti and Rossi 1991; Lahlou
et al 1992; Hammons and Neeley 1993; Setunge et al 1993; Imran 1994; Ansari and Li 1998;
Harmon et al 1998; Sfer et al 2002; Lu and Hsu 2006; Xiao et al. 2010) that the stress-strain
properties of concrete can be improved through confinement. The ultimate compressive
strength (Xie et al 1995; Karbhari and Gao 1997; Candappa et al 2001; Saiidi et al. 2005; Wu
et al. 2009; Yu and Teng 2011) and the ductility (Attard and Setunge 1996; Imran and
Pantazopoulou 1996 and 2001; Saafi et al. 1999; Xiao and Wu 2000; Teng et al. 2009) of
concrete can be improved through active or through passive confinement such as
through confinement with fiber-reinforced polymer (FRP) jackets. Typically, the material
properties of passively confined concrete are determined experimentally on small scale 2:1
aspect ratio specimens for varying levels of confinement and researchers use these
experimental results to develop empirical or semi-empirical equations for the influence of
concrete confinement
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(Samaan et al. 1998; Toutanji 1999; Moran and Pantelides 2002; Xiao and Wu 2003; Binici
2008; Fahmy and Wu 2010). In order for engineers to fully exploit this improved material
performance, e.g. in the form of design guidelines for FRP-strengthened concrete columns,
it is important to ensure that any equations developed from small scale concrete specimens
are truly representative of the actual behaviour of full-scale columns which have aspect
ratios markedly different from the 2:1 ratio most commonly tested.

The influence of specimen size on concrete material properties is a well researched topic as
far back as the 1920’s (e.g. Gonnerman 1925). In the context of passive confinement, the
influence of specimen size (dimensions and aspect ratio) on the potential improvement in
concrete strength and ductility of FRP confined concrete members is still heavily researched
and debated.

For example, Owen (1998), Peng et al. (1998), Jia and Cheng (2003), Lin and Li (2003), Masia
et al. (2004), Theriault et al. (2004), Elkadi and van Mier (2006), Tong et al. (2009), and
Wang and Wu (2010) consider the effect of specimen size to be considerable and have
experimentally confirmed a size effect in FRP confined concrete columns for both circular
and square specimens and with a wide range of wrap types. Conversely, Mirmiran et al.
(1998), Lorenzis et al. (2002), Carey and Harries (2005), Matthys et al. (2005), Zhu et al.
(2005), Gu et al. (2006), Silva and Rodrigues (2006), and Scott et al. (2010) believe that the
size effect on the strength or ductility of FRP-confined concrete columns can be ignored.
Moreover, current design codes [American Concrete Institute (ACl) 2002; Canadian Standard
Association (CSA) 2002] for concrete structures strengthened with FRP materials do not
consider the influence of specimen size on the material behaviour of confined concrete, that
is the size effect.

From the above literature review, it is clear that there are differing views on the influence of
specimen size on the material response of confined concrete and that further investigation
is necessary. In this paper, shear friction theory (Chen et al. 2014b, 2014c) is used to
investigate the size effect in axially loaded concrete specimens, where a mechanics
relationship is ultimately developed to allow the global axial-stress/axial-strain relationship
of the large or full-scale Specimen 3 in Figure 1 to be extracted from small scale test
specimens such as Specimen 1 with a smaller diameter and height.
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Figure 1: Size relationship of arbitrary-size FRP confined specimens

The global axial-stress/axial-strain relationship of concrete depends on the method of
measuring the strain (Chen et al. 2014a, Visintin et al. 2014a); in this paper it will be
assumed to be the total axial deformation divided by the height of the cylinder. The global
stress/strain relationship also depends on the shape of the cylinder p, which is defined as
the following ratio of the prism length L, to prism diameter dp,

Equation 1

When comparing prisms of differing dimensions in order to quantify the size effect, the ratio
of specimen lengths in the axial direction na,, is defined as the following ratio of the two
prism lengths

_ Lpr—

= Equation 2
Lpr—1

nax

where L, is the height of the taller prism and L,.; that of the shorter. The lateral size
parameter na is the ratio of the two prism diameters

dpr—2

Mat = Equation 3

dpr-1

where d,; is the diameter of the narrower cylinder.

This paper quantifies through shear friction mechanics the size effects of Equations 2 and 3
for specimens in which the shape p in Equation 1 is equal to or greater than 2 as this latter

requirement allows the wedge angle a to remain constant.

3. Shear friction mechanism and shear friction properties
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Figure 2(a) shows the circumferential wedge model in which a circumferential double wedge
a-b-c of length 2L,qg and at an angle a forms around a cone that depends on the Mohr-
Coulomb frictional component of the concrete (Balmer et al. 1949; Mattock 1974; Jamet et
al 1984; Cusson and Paultre 1995; Rutland and Wang 1997; Harmon et al. 1998; Ansari and
Li 1998; Lu and Hsu 2006; Karam and Tabbara 2009; Van Mier and Man 2009; Mohamed Ali
M.S. et al 2010; Roddenberry et al 2011; Visintin et al. 2013). The sliding planes a-b and b-c
are initially uncracked and sliding A,q4g Occurs as shown. Furthermore, for sliding to occur
requires localised crushing at the apex b of the cones. However, for slender prisms whose
aspect ratio W is bigger than 2, sliding most likely occurs across a diagonal sliding plane as
shown in Figure 2(b) which does not require localised crushing. For a fixed angle a in Figure
2, from equilibrium there is a direct relationship between the axial stress o,,, the normal
stress to the sliding plane o, and the shear stress along the sliding planes 1. (Chen et al
2014b). The shear-friction material properties quantify the relationship, across a potential
initially uncracked sliding plane, between: the shear stress t.; normal stress o; crack width
he; and sliding along the plane Ayqg. Hence shear-friction material properties can be used to
quantify Aygg and consequently the vertical component H, 4 and consequently the effective
strain ewgg due to Hygg.

wdg

Localized
crushing

l€

(a) Circumferencial wedge (b) Single sliding plane

Figure 2: Failure models of a confined cylinder
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3.1 General expression for global axial strain

Consider the FRP confined cylinders in Figure 2 which are of length L, and diameter d, and
which are subjected to a uniform axial stress of o, which results in an axial contraction of
D.x. The total axial contraction of the prism D,y in Figure 2(a) or 2(b) for the applied axial
stress 0. arises due to both the axial contraction of the material Dyt and the axial
contraction due to sliding of the wedge Dy,qg that is

Dax = Dimat + Dwag Equation 4

in which the total or global contraction D, may also be expressed as a function of the global
axial strain €ax.gp @s

Dy = €ax—gbiLlpr Equation 5

where €,.gp1is @ pseudo strain as it consists of both the material contraction and the slip of
the wedge.

The material deformation D,;: may also be defined as
Diat = €matLpr Equation 6

For convenience, the axial material strain €.t can be determined as the stress o, divided by
the concrete modulus E.. However, it could be taken as nonlinear if the material properties
were available. Furthermore, the contraction due to the sliding of the wedge D4z in Figure
2(a) or 2(b) is

Dyag = BHyag Equation 7

where B is a coefficient and equals 2 for circumferential wedge model as shown in Figure
2(a) and 1 for single sliding plane model as shown in Figure 2(b). Hyqg is the axial component
due to sliding along the plane Ayqg so that it is given by

Hyag = Ayqgcosa Equation 8

where «a is the angle of the wedge sliding plane to the longitudinal axis and proposed by
Visintin et al. (2014a) as
a=26°+ c’;’ﬂ X 20° Equation 9

co

where f is the unconfined cylinder strength, and o, is confinement stress as shown in
Figure 2.

Dividing both sides of Equation 7 by L, results in the effective strain due to wedge sliding as

A
Ewdg = szﬂ Equation 10

pr

The global axial strain €ay.gp1 is composed of the size independent material strain (0.x/Ec) and
size dependent effective strain €,45. Hence, it is size dependent and can be determined from

o, BAwagcosa .
Eax—gbl = EL: + = Equation 11

Lpr
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3.2 Quantification of global axial strain

In order to evaluate the slip along the sliding plane A4 in Equation 11, consider the four
shear friction components shown in Figure 2. The shear-friction properties are the
combinations of the normal stress o, the shear stress 1, interface widening h, and
interface sliding Ayqg as illustrated in Figure 3.

1, (M Pa)A

Tsart o increasing (MPa)

o increasing (MPa)

Figure 3: Shear-friction properties

From Mohammad Ali et al. (2010) and Visintin et al. (2014b), the shear stress t. and the
normal stress G in Figure 2 and required for Figure 3 are determined by

Ter = (Ogx — BOcon) * Sina - cosa Equation 12

O = Ogy * SiN%a + Bogyy, - cOS%a Equation 13
that is t¢.1 in Figure 3 and 6.1 can be quantified for a known axial stress Gay.1 and confining

stress Gcon-1. Hence for specific values of t¢.1 and 6.1 as shown in Figure 3, Aygg-1 and herq
can be quantified from the shear friction material relationships as shown.

The shear friction material relationships in Figure 3 can be determined from the following
generic expressions (Chen et al. 2014b)

Ter _ 2a1(Ade+az)

Tmax - (Awdg+a2)2+a12

Equation 14

in which Tmax, as in Figure 3, is the maximum shear strength along a sliding plane for a given
normal stress o, and is given by

Tmax — _() 6502 (&)2 +1.104 ("—) +0.1659 Equation 15

fCO co co

176



and where the factors a; and g, control the ductility of shear friction curve as follows

a, =4 (%) —-0.2 Equation 16

a, =0.1 (%) + 0.945 Equation 17
Furthermore

0 0 < A< Sgep '

hey = {k(Ade B Ssep) A 5,0 Equation 18
where s, in Figure 3 and as follows, is the sliding displacement at the onset of crack
widening he

% =1+10 (%)2 Equation 19

in which s, in Figure 3 and as follows, is the sliding displacement at Trax
Ocr 2 Ocr .
s, = 0.429 (f—) +0.529 (f—) +0.013 Equation 20

and k in Equation 18 is a factor which controls the opening rate of h. and is given by

k = —0563 (;—) +0.683 Equation 21

In general, the ‘Serpentine Curve’ of Equation 14 has a good accuracy in the range of
08 < Awng 5 mm. However, it cannot catch both the onset of sliding Tt in Figure 3, nor
the ascending branch. For this small range thatis 0 < A 4,< 0.8

(Awdg)a
Tecr—Tstart  __ So 3

Equation 22
Tmax ~Tstart a3—1+(AVSVdg)a3 qguation
where
2
Tstart — OIcr Ocr .
mert = —0.4429 (%) + 08653 (%) + 0.1554 Equation 23

and az is a factor which controls the ductility of the concrete and is given by

E 245co
— c fec .
az = — . X — Equation 24

€cc

in which the confined cylinder strength (Visintin et al. 2014b) is given by

0.82
fee = feo [1 + 3.65 (%) ] Equation 25

co

and the strain at the peak strength of confined concrete is given by
o \1.03
gee = (476 X 107°f,, + 2.13 X 1073) [1 + 14.74 (%) ] Equation 26

and the concrete modulus (ACI 1992) by
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E. = 3320,/ f;, + 6900 Equation 27

where the unit is in MPa.

4. Effect of two distinct failure models

Previous shear friction research (Visintin et al. 2014b) has indicated that two failure modes
can be encountered. That is failure through the formation of a circumferential wedge in
Figure 2(a) or through a single sliding plane as shown in Figure 2(b); the failure mode being
dependent on the geometry of the specimen (Chen et al. 2014a).

4.1 Effect on factor 3

The failure mode factor B first introduced in Equation 7, that equals 2 for the circumferential
wedge model in Figure 2(a) and 1 for the single sliding plane model in Figure 2(b), directly
affects the axial effective strain due to wedge sliding in Equation 10 and consequently the
axial global strain in Equation 11 and, furthermore, the shear friction components in
Equations 12 and 13.

4.2 Effect on global lateral strain €4t-goi

For the circumferential wedge model in Figure 2(a), the cross-section of the axial loaded
specimen keeps the circular shape as shown in Figure 4(a) and expands uniformly around
circumference. Hence, the global lateral strain €tqp is equal about both axes (X and Y
directions in Figure 4(a)) and is composed of three components that are: the material
dilation strain due to oy

Oax

Elat-mat = V¢ B, Equation 28

in which y. is the material Poisson ratio of the concrete and can be determined by Candappa
et al. (2001) as

V. =8X 107°%(f.,)? + 0.0002f,, + 0.138 Equation 29
where the unit is in MPa; the contracting strain caused by confinement stress oeon
Elat—con = — 02"” Equation 30

and the expansion strain due to sliding of the wedge (Visintin et al. 2014a, 2014b)

; her
B(Awdg sin a+55¢ a)

Slat-wdg = oy Equation 31

Hence, the global lateral strain €jat.gp Of the circumferential wedge model is equal to

€lat—gbl = €lat-mat T €lat—con t €lat-wdg = Ecircum—cw Equation 32
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which will be shown later to be the circumferential strain for the circumferential wedge
€draum- FOr the single sliding plane failure mode, the cross-section of the axial loaded
specimen takes an elliptical shape as shown in Figure 4(b) and the expansion strain due to
sliding of the wedge €pt.wag (Equation 31) occurs only in the direction of sliding direction that
is in the X direction in Figure 4(b). Therefore along the major axis, the global lateral strain
Elat-gbl-maj IS €Qual to

€lat—gbl-maj = €lat-mat T €lat-con T Elat-wdg Equation 33

Y (Minor axis)
Y dor(1+€1tgbi) | dor(1+E 1t gbl-maj)

dor(1+€Elat-gbl-min)

X X (Major axis)

(a) Circumferential wedge (b) Single sliding plane

Figure 4: Cross-section of a confined cylinder for distinctive failure models

However along the minor axis, the global lateral strain €jtgpi-min is due only to the material
and confinement dilation that is

Elat—gbl-min = €lat-mat T Elat—con Equation 34

4.3 Effect on circumferential strain €grcum

For both failure models in Figure 2, the passive confinement stress of an FRP confined
cylinder is always given by

_ 2&circumEFRpPt
Ocon =

Equation 35
dpr

where Eggp is the elastic modulus of the FRP and &gcum is the circumferential strain that
depends on the model adopted to simulate the dilation of concrete under axial stress that is
either Figures 4(a) or 4(b).

For the circumferential wedge model in Figure 4(a), the cross-section of an axially loaded
specimen keeps the circular shape and expands uniformly around the circumference.
Meanwhile, the perimeter of the cross-section changes from nd,,, the dashed line shown in
Figure 4(a), to mdy(l+€ptgn), that is the solid line shown in Figure 4(a). Hence, the
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circumferential strain €qrcum-cow, that is defined as the change in circumference as a
proportion of the original length, is (dyr(1+€jat-gbl)- Tdr)/(Tdpr) Which reduces to the global
lateral strain €jtgb that can be determined from Equation 32.

For the single sliding plane failure mode in Figure 4(b), the cross-section of an axially loaded
specimen can be assumed to take an elliptical shape where the minor axis deps-min is the
diameter of a cylinder subjected to only material dilation and confinement as follows.

delps—min = dpr(l + glat—gbl—min) Equation 36

The major axis is taken as the diameter of a cylinder subjected to the material expansion
due to o, the contraction caused by confinement stress o., and the expansion due to
sliding of the wedge, that is using Equation 33 it is given by

delps—maj = dpr(l + glat—gbl—maj) Equation 37

As a result, the circumferential strain gcum Of single sliding plane model is governed by

2 2
delps—min"'delps—maj d
2 pr

Equation 38

Ecircum—-ss = d
pr

5. Variation in diameter of FRP confined cylinders

In this study, compressive strengths of concrete in the range of 30 to 60 MPa are
investigated as this range of concrete compressive strength is consistent with that used to
develop the shear friction properties (Chen et al. 2014b) used in this paper. FRP elastic
moduli Ergp in the range from 200 to 280 GPa and prism diameters nj,; up to a maximum of
six times the base prism diameter are adopted.

This study on varying the diameter also assumes the following:

(1) The confined concrete specimens have identical concrete and FRP material
properties.

(2) The specimens experience identical failure modes of either the circumferential
wedge or single sliding plane failure. The angle of the shear friction sliding plane, a,
is equal in all the specimens.

(3) Specimens of varying diameter but which have identical confinement and identical
failure modes will have identical axial-stress/axial-strain relationships. This is not an
assumption but a product of shear-friction theory and is illustrated in Figure 3 where
specimens with the same o will have the same shear-friction properties.

(4) Hence, the material strain g, and effective strain due to shear friction properties of
two specimens being equal provides the same value of global strain €ax.gn (Equation
11);
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5.1 Circumferential wedge failure

In following derivations, shear friction properties (Equations 12 to 27) and circumferential
strain €grum-cw (EqQuations 32) are used to investigate the size effect in axially loaded
concrete specimens, where a mathematical relationship is ultimately developed to quantify
the thickness of FRP wrap t; in Figure 1(b) required for a given specimen diameter d,., to
provide the same global axial-stress/axial-strain relationship as the concrete cylinder in
Figure 1(a) with specimen diameter d,..; and FRP wrap thickness t;.

5.1.1 Mechanics solution

Assuming the specimen fails in a circumferential wedge, and substituting Equation 32 into
Equation 35 and simplifying, gives

dax ( wdg Sin a+c}cl)s a)
_ Vg, ™ dpr .
Ocon = Tor 1 Equation 39
2Epppt Ec

For the case where E, y. and Errp and a are independent of specimen geometry that is they
are the same, for Specimen 1 in Figure 1(a)

her—1
Ye UaxL2< wdg—1Sina+ corsoc>
_ CE dpr-1 :
Ocon = r—— Equation 40

2Epgpty  Ec

and for Specimen 2 in Figure 1(b)

her—2
Oax, ( wdg—2 Sinat cf)rsa>
_ e Gpr- Equation 41
Ocon = T 1 quation
ZEFRPtZ Ec

Equating Equations 40 and 41, and simplifying yields

: cr=1
< gax, (de_lslna+ cosa \dpr 2

YeEe dpr-1 /ZEFRP
t, = — Equation 42
oax 9pr-1 | d129r—1 Jdpr-11 1 \ (Awdg 1sina+ cosa)
€ Ec 2Epgppt1 \2Eprptidpr—2 dpr—2Ec Ec) dpr-1

Equation 42 above is a mechanics solution for the influence of specimen diameter for
circumferential wedge failure. That is, for Specimen 1 with prism diameter dy.; and
thickness of wrap t;, Specimen 2 with prism diameter dp., requires an FRP wrap thickness of
t,, where t, from Equation 42 provides the same global axial-stress/axial-strain relationship
as Specimen 1. However, Equation 42 includes the shear friction properties Ayqg and h, that
vary according to the magnitude of the applied load. Therefore from Equation 42, the
thickness of the FRP wrap must be varied during the loading process in order to get exactly
the same global axial-stress/axial-strain curve for two different sized FRP wrapped
specimens. The following simplifications can be used to get a practical expression.
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5.1.2 Simplification One - Ignoring shear friction properties

Let us first ignore the effect of shear sliding; This is achieved by making all the terms with
the shear friction material components Aygg.1 and her.1 in Equation 42 equal to zero. Hence
the only terms included are the stress-strain material properties. In this case Equation 42
simplifies to

ty = Niatty Equation 43

where na is the ratio of the prism diameters from Equation 3. Equation 43 which has been
derived through mechanics is proposed by various researchers (e.g. Theriault et al. 2004,
Wang and Wu 2011, Akogbe et al. 2011) and is correct when based purely on material
stress-strain properties that is the shear-friction mechanism is ignored.

Accuracy of Simplification One

If the simplified size effect expression Equation 43 is accurate, the global axial-stress/axial-
strain relationship of Specimen 1 in Figure 1 with prism diameter d.; and thickness of wrap
t1 will be the same as that of Specimen 2 with prism diameter dy.., and a FRP wrap thickness
of t;, where t; is from Equation 43.

Prior to calculating the global axial strain €u.gp for a given imposed o, the confinement
stress o.n is required. The following analysis is carried out by guessing a lateral confinement
Ocon-guess cOrresponding to the imposed o,cand then checking if Ocon-guess IS the same as the
confinement o, arising from the shear sliding mechanism that is Equation 35. The material
and specimen properties adopted in the following examples and which are used throughout
the remainder of this paper are: f,,=40 MPa, Errp=240GPa, an FRP rupture strain of
€frp,rup=0.01, £1=0.176 mm, d,r.1=100 mm.

The analysis is carried out as follows:

(2) For the given imposed 0,xand guessed Ocon-guess iN Figure 2, the shear stress t. and
normal stress o. across the potential sliding plane can be determined from the
equilibrium Equations 12 and 13.

(2) For the now known 1. and o the corresponding slip of the wedge Ayqg and crack
separation h., can be determined from Equations 14 and 18.

(3) Knowing shear friction properties (Awdg, hcr), the circumferential strain €crcum-cc €an
be determined by Equation 32.

(4) Substituting the known €¢reum-cc into Equation 35 gives the confinement o, that has
arisen from the shear sliding mechanism. If o, does not equal Ocon-guess then the
analysis is repeated with a new Ocon-guess Until it does.

(5) Knowing the right confinement oon, Awdg can be calculated from Equations 14 as T
depends on Ocn, and then the global axial strain €.y can be determined by
Equation 11. This gives one point on the global axial-stress/axial-strain curve such as
point A in Figure 5.
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(6) Varying the given imposed o, gives the whole global axial-stress/axial-strain curve as
the solid line shown in Figure 5 that is for dp.;=100 mm.

Varying the cylinder diameter to d,.,=200 mm, and using Equation 43 to calculate the
corresponding thickness t,, the global axial-stress/axial-strain curve for a 200 mm diameter
cylinder can be determined by repeating the above analysis as shown in Figure 5. Similarly,
the results for a 300 mm diameter cylinder are also shown. It can be seen that Equation 43
which is based on the mechanics of the material stress-strain properties underestimates the
FRP plate thickness required to achieve the same global concrete stress-strain relationship
with increasing diameter. Hence the use of Equation 43 in converting the results of small
diameter cylinder tests for larger diameter columns is slightly unconservative.
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|
l
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0.02 0.025
8ax—gbl

Figure 5 - Global axial-stress/axial-strain relationship using Equation 43

Figure 5 highlights the applicability of the derived expression (Equation 43) to simulate the
behaviour of FRP wrapped concrete specimens of varying diameter. It is worth noting that
the above analysis can be applied to either of the sliding mechanisms in Figure 2 depending
on which is assumed to have occurred.

5.1.3 Simplification Two — ignoring material stress-strain properties

Let us consider again the circumferential strain €gcum-cc Of Equation 32 which is composed of
three components: the material dilation strain €a.mat (EQuation 28); contracting strain
caused by the confinement stress €ja.con (EQuation 30); and expansion strain due to sliding of
the wedge €jat.wgg (Equation 31). Consider only the most dominant component of the shear
friction properties Ayqg in Equation 31 and ignore the effect of crack separation h.,, material
Poisson ratio y. and contraction due to confinement o, then Equation 32 simplifies to

2Aygg sina
Ecircum—cc =

Equation 44
dpr
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Substituting Equation 44 into Equation 35 yields

Ocon = 4Epgrp * Ayag Sina - Ktrz Equation 45

Applying Equation 45 to Specimens 1 and 2 in Figures 1(a) and 1(b), then equating the
confinements gives

ty = Mat’ty Equation 46

Using the same analysis as described in Section 5.1.2 for Equation 43, the applicability of
Equation 46 to simulate the behaviour of FRP wrapped concrete specimens of varying
diameter is shown in Figure 6. It can be seen that in this case, which is based purely on the
mechanics of the shear friction component of sliding, the use of Equation 46 overestimates
the plate thickness required to achieve the same confinement for larger diameter
specimens. Hence this is a conservative approach compared with that of Equation 43 which
is slightly unconservative. It would appear from Equations 43 and 46 that the exponent in
Equation 46 should lie between 1 and 2.
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Figure 6 - Global axial-stress/axial-strain relationship using Equation 46
5.1.4 Proposed lateral size expression

Comparing Equations 43 and 46 and from the analyses in Figures 5 and 6, it is clear that the
following mathematical expression

th = Nat™ts Equation 47

is a simple and reasonable model to quantify the influence of specimen diameter on the
global axial-stress/axial-strain behaviour of an FRP confined concrete specimen.
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It has already been shown that it is impossible to get identical stress/strain relationships for
specimens with varying diameters. However identical stress/strain responses can be
obtained at a point with close correlation elsewhere. Selecting the point of FRP rupture,
&mp,rup = 0.01, as the “key” point of convergence for the global axial-stress/axial-strain
curves, the exponent x in Equation 47 for prism diameter ratios (n.t) of 2, 3 and 6 is 1.17
and 1.23 and 1.29 respectively as shown in Figure 7 below. The first Rupture Point on the
left is rupture of the 100 mm cylinder, the next that for the 200 mm cylinder and so on. It
can be seen that there is reasonable correlation elsewhere.
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Figure 7 — Convergence for circumferential wedge model

The average of the exponents in Figure 7 is 1.23. A conservative approach would be to use an
exponent of 1.29 that is the upper of the range. For example if a 100 mm diameter cylinder had an

1.29

FRP wrap of 1 mm then a 300 mm diameter cylinder would need a wrap of 3"“° to have the same

confinement at rupture that is a wrap thickness of 4.12 mm. Conversely to obtain the stress/strain
relationship for a 300 mm diameter cylinder with a 4.12 mm FRP wrap would require the testing of a
100 mm diameter cylinder with a 1 mm thick wrap. Bearing in mind that the height of the cylinders
must be the same; allowance for variations in the height are quantified later.

5.2 Single sliding plane failure

Similar to the analysis for the circumferential wedge failure mode above, the shear friction
properties of Equations 12 to 27 and the circumferential strain €gcum-ss Of Equations 38 are
used to investigate the size effect in axially loaded concrete specimens.

5.2.1 Mathematical solution
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Substituting Equation 38 into Equation 35 yields

2 2
\/delps—maj"'delps—min d
2Epgpt 2 pr .
Ocon = — Equation 48
dpr dpr

Substituting Equations 36 and 37 into Equation 48 and simplifying results in

_ 2Epppt , [(A+&lat—gbl-maj)*+(1+Elar—gbl-min)® 1
Ocon = ( 2 )

Equation 49
dpr

Substituting Equations 33 and 34 into Equation 49 yields

— 1) Equation 50

__ 2Epppt (1+&1at—mat*Elat—con*Elat-wdg)? +(1+E€1at—mat+Elat—con)?
Ocon = 7 ( 2
pr

Substituting Equations 28, 30 and 31 into Equation 50 and rearranging yields

2
; her
Jax_0Ocon (Ade Sma+COSOf) oax_0con)|?
1+ ve . +|1+(y Zox_Zcon
Ec Ec dpr Ec Ec
dpr _

- Ocon +1= > Equation 51

2EFRrp

Squaring both sides of Equation 51 and expressing it as a function of confinement o

provides
A (0eon)?+ B 0ppn +C =0 Equation 52
where
Ay \2 112
A=2 (—p ) -2 (—) Equation 53
2Epgpt Ec
. h
_ dpr % (Awdg sin a+cogra) l M l i
B = Z_EFRPt +2 (yc E, + i +2 . + 2, 5 B Equation 54
and
. 2 . h
_ Oax (Awdg sin a+£§ra) _ Oax (Awdg sin a+CO§Ta) _ ( %)2 B ( %)
C= ()/c 5 T . Z\vep . Ve 2\¥e,
Equation 55
Solving for the positive root of Equation 52 gives
VR2_ —
Ocon = = ;:C = Equation 56

Applying Equation 56 to Specimens 1 and 2 in Figure 1 and equating them gives

/312—4,4101—31 /322—4,4202—32

= Equation 57
24, 24,

where A; and A, are from Equation 53; B; and B, from Equation 54; and C; and C, from
Equation 55. Removing the square root of Equation 57, and expressing it in terms of A,
yields
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C12A22 + (Blzcz + 2A1€261 - ClBle - 4A1€1A2€2)A2 + ((AICZ)Z - AICZBIBZ +
A,CB,Y) =0 Equation 58
Equation 58 is the governing equation that includes the relationship of thickness ratio t,/t;

and lateral size of the specimen njt. Substituting Equations 53, 54 and 55 into the positive
root of Equation 58 and simplifying results in

Nyqtdpr-1

t2=

e L T
2EFRpt1 Ec EpRppt1 Ec Nlat

2
2 dpr—
1 pr—1
dpr— 2 2 dpr— 281qt— +4€1q¢— +42 (ntac 1)(E) (ZEF pt)
2F jJG<2< pr 1) 2(1) )(2 pr—1 , ““lat-wdg lat-mat ) \ 4 RP'1

Equation 59

in which G is a parameter equal to

Nyt — 1 2
G = # ((Slat—wdg) + 2€lat—wdg + 2(€lat—mat)2 + 4‘Elat—mat + 2‘c—'lat—wdgElat—mat)
lat

Equation 60

Equation 59 is a mechanics expression for the influence of specimen diameter for a single
sliding plane failure. This expression is equivalent to Equation 42 for the influence of
specimen for circumferential wedge failure. Equation 59 does not lend itself to practical
application due to its complexity. If shear friction properties are ignored, as for the
circumferential wedge model in Sections 5.1.2, the simplified expression of Equation 59 is
still dependent on the axial stress o, and consequently not suitable for practical
application. Similarly, when only considering the most dominant component of shear
friction properties Ayqg, the simplified expression of Equation 59 is still dependent on shear
friction properties and not applicable at all.

5.2.2 Proposed lateral size expression

Repeating the same approach as for the circumferential wedge failure mode earlier, and
adopting FRP rupture as the “key” convergence point, the exponent x in Equation 47 is 1.16
and 1.21 and 1.26 respectively for n.t 2, 3 and 6 respectively as shown in Figure 8. Hence
this exponent only varies slightly from that derived from the circumferential wedge and a
safe design would be to use the upper end of the range which for the circumferential
wedge was 1.29.
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Figure 8: Convergence for single sliding plane model

5.3 Comparison of lateral size effect

The exponent of Equation 47 for both the circumferential wedge and single sliding plane for
various cylinder diameter ratios 1, are shown in Figure 9. It can be seen that there is not a
large variation between failure modes nor a large change and, hence, using the upper
bound value of 1.29 as derived previously will not give an overly conservative design. Hence
it is suggested that to ensure the same confinement

th = M2t Equation 61
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Figure 9: The relationship between lateral size of the specimen nj,; and power of size effect
expression x

6. Variation in height of FRP confined cylinder

Section 5 has been concerned with the size effect of varying the diameter of a cylinder. It
was shown that for Specimen 2 in Figure 1 to have the same confinement as Specimen 1 the
FRP plate thickness would have to be increased according to Equation 61 in which the
exponent is 1.29. This would ensure that the confinement in both specimens are close so
that the global axial-stress/axial-strain relationship would also be close. It is also worth
noting that this research assumed that the angle of wedge o remained constant which
requires that the shape factor p in Equation 1 is always greater than or equal to two.

The global axial-stress/axial-strain relationship also depends on height. For specimens with
the same diameter and FRP wrap, the variation in confinement with axial stress is identical
so that the wedge deformation Dyqg is identical. Hence if one specimen has a material
deformation Dmat.1 and wedge deformation Dygg.1 in Equation 4, then when the height is
doubled, as an example, the wedge deformation stays the same that is Dygg1 but the
material deformation doubles to 2Dat.1 according to Equation 6. Based on this shear-friction
mechanism, research on cylinders without FRP wraps has shown (Chen et al. 2014a, Visintin
et al. 2014a) that the global axial-stress/axial-strain relationship of say Specimen 3 in Figure
1 can be obtained from that of Specimen 2 using the following expression when p > 2.

1 .
€ax—gbl-3 = (eax—gbl—z - gmat) — + Emat Equation 62

where €axgpi-2 and €axgp-3 are the global axial strains of Specimens 2 and 3 in Figure 1
respectively and are determined by Equation 5.
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Equation 62 is not only applicable to specimens without FRP confinement but also
applicable to specimens with the same confinement (Chen et al. 20144, Visintin et al. 2014a)
as this ensures that for a given axial stress the shear friction components are identical.
When Specimens 2 and 3 in Figure 1 have the same diameter and FRP plate thickness then
for a given axial load they have the same confinement. Consequently Equation 62 can be
used to extract the global axial-stress/axial-strain relation of one specimen from the other.
Hence if Specimen 3 with a plate thickness t; is tested to obtain the concrete global axial-
stress/axial-strain relationship then from this global axial-stress/axial-strain relationship can
be obtained the global axial-stress/axial-strain relationship for the shorter Specimen 2 using
Equation 62. Furthermore, the global axial-stress/axial-strain relationship of Specimen 2
applies to Specimen 1 if the plate thickness t; is reduced to t; according to Equation 61 The
converse is also applicable such that a small size specimen such as Specimen 1 in Figure 1
can be designed such that the global axial-stress/axial-strain relationship for the larger
Specimen 3 can be extracted from that of the smaller specimen.

As an example, the solid line shown in Figure 10 is the test global axial-stress/axial-strain
relationship of small size specimen (equivalent to Specimen 1 in Figure 1) which is a
100X200 mm cylinder wrapped with 0.5 mm thick FRP. Hence, the global axial-stress/axial-
strain relationship for a 100X600 mm specimen wrapped with 0.5 mm thick FRP can be
derived from the 100x200 cylinder results using Equation 62 and this is shown as the dash-
dot line in Figure 10. It can be seen from Figure 10 that tripling the length of the specimen
from 200 to 600 mm has no effect on the axial material strain €., however, the effective
strain due to wedge €,,4; decreases to one-third. Furthermore, for a 300X600 mm specimen
wrapped with t, thickness FRP, where t; is from Equation 61 and equals 3129 X0.5=2.06 mm,
provides the same global axial-stress/axial-strain relationship as that of the above 100X600
mm specimen. From a numerical analysis in Chen et al. (2014b and 2014c) and shown in
Figures 5 to 8, significant shear sliding does not occur until the axial stress o, reaches about
the compressive strength of unconfined concrete f.,. Hence, neither the size nor the
thickness of FRP has any effect on the diverging stress ag; in Figure 10 which is appropriately
constant at f..
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Figure 10: Extracting full-size properties from test specimen

7. Conclusion

Based on the mechanics of shear-friction, it has been shown that the global axial-
stress/axial-strain relationship of a large or full-scale symmetrically or uniformly loaded FRP
confined cylindrical specimen can be extracted from mechanically designed small scale FRP
wrapped test specimens. This design approach allows for the size effects due to variations in
cylinder diameter, height and FRP wrap thickness through the mechanics of shear friction.

A numerical shear friction approach has been developed for simulating FRP confined
concrete cylinders. Two distinct failure modes have been examined, and mechanics
relationships show that for varying concrete prism diameter the FRP wrap thickness must
vary with applied axial load to provide identical stress-strain relationships for differing prism
dimensions. Hence, it is not possible to get identical stress-strain curves for two different
sized FRP wrapped concrete cylinders as the FRP wrap thickness is unable to be varied
during loading. However, simplified expressions are proposed that give good accuracy for a
wide range of cylindrical specimen widths and heights.

This research should enhance the value or usefulness of testing FRP confined cylinders as in
theory the results from a single test can be adapted to apply to a wide range of shapes and
sizes.
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Chapter 5: Tests on Steel Tube Confined Concrete

1. Introduction

It is widely known (Richart et al 1928 and 1929; Balmer 1949; Gardner 1969; Kotsovos and
Newman 1978 and 1979; Jamet et al 1984; Smith et al 1989; Bellotti and Rossi 1991; Lahlou
et al 1992; Hammons and Neeley 1993; Setunge et al 1993; Imran 1994; Xie et al 1995;
Attard and Setunge 1996; Imran and Pantazopoulou 1996 and 2001; Ansari and Li 1998;
Harmon et al 1998; Candappa et al 2001; Sfer et al 2002; Lu and Hsu 2006; Xiao et al. 2010)
that the stress-strain properties of concrete can be improved through active and passive
confinement such as through confinement with steel tubes. Steel tube confined concrete
columns (STCC or referred to by other researchers as concrete-filled steel tube columns)
have become more and more popular as confined members for structural design purposes.

Due to limitations in the capacity of testing equipment, typical material properties of steel
tube confined concrete are determined experimentally on small scale specimens of varying
aspect ratios and tube diameter-to-thickness ratios and these experimental results are then
used to develop empirical or semi-empirical equations for the influence of concrete
confinement (Schneider 1998, Huang et al. 2002, Cai 2003, Sakino et al. 2004, Giakoumelis
and Lam 2004, Chen 2005, Han 2007, Hatzigeorgiou 2008). Hence, it is important to ensure
that the proposed equations are truly representative of the actual behaviour of full-scale
columns. Moreover, current design codes [American Concrete Institute (ACI)
1999; American Institute of Steel Construction (AISC) 1999; Australian Standards:
Concrete Structures (AS3600) 1994; Australian Standards: Steel Structures (AS4100) 1998;
Chinese Standards: Code for Design of Concrete Structures (GB50010) 2010] for concrete
structures strengthened with steel tube materials do not

consider the influence of specimen size on the material behaviour of confined concrete that
is the size effect. Contrary to the view of ignoring size effect, some researchers (Sakino et
al. 2004) have proposed expressions of scale effects on the compressive strength and
axial-stress/axial-strain curve that were regressed from their experimental tests.

It has been introduced in Chapter 2 that the axial-stress/axial-strain relationship depends
on the shape of the prism p, which is defined as the ratio of the length to diameter,

Equation 1

the axial size of the specimen na, Which is defined as the ratio of the prism lengths, such as
lengths of specimens 2 and 3 in Figure 1

_ Lprs

Nax Equation 2

Lpr—2

and the lateral size of the specimen nj,, which is defined as the ratio of the prism diameters,
such as diameters of specimens 1 and 2 in Figure 1
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Equation 3

Theoretical analyses (e.g. Chen et al. 2014a, Visintin et al. 2014 in Chapter 2) have
investigated and explained the size effect for specimens with a constant diameter but
varying lengths, such as specimens 2 and 3 in Figure 1. Moreover, the size effect for
specimens with a constant length and varying diameters, such as specimens 1 and 2 in
Figure 1 has been quantified in Chapter 4.

dpr-3= dpr-z
— 5
| |
| |
| |
dpr-l dpr-2= r’latdpr-l : :
| |
e F——  —p | |
| | | | : ta=t, :
| | -
| | : : —> r_ : NaxL
| | | |
t
| | —»| -2 | I '
P Y O 1 <”:> | i
: : : : Visintin et : |
| | Chenetal. | | al. 2014a || !
I I 2014d I I ! :
— i S~
(a) Specimen 1 (b) Specimen 2 (c) Specimen 3

bridge-specimen

two arbitrary-size specimens
Niat and Nax

Figure 1: Size relationship of two arbitrary-size specimens

The main aim of this test program is to verify the accuracy of the following axial size effect
expression proposed in Chapter 2:

1 .
€axgl-3 = (Eaxgl—z - gmat) Nom + Emat Equation 4

where €52 and €axg-3 is global axial strain of specimens 2 and 3 as shown in Figure 1
respectively and equals to total axial strain due to material contraction and wedge
sliding;
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Emat IS Material strain due to material contraction that equals the axial stress 0.y
divided by the concrete modulus E;

and also to verify the following lateral size effect expression proposed in Chapter 4:

t, = M’ ty Equation 5

where t; and t; is the thickness of the steel tube for specimens 1 and 2 as shown in Figure 1;

x is the exponent of lateral size effect equation which lies between 1 and 1.29 and
which depends on the lateral size of the specimen nj,; and failure model.

It is worthy to note that Equation 5 was originally derived for FRP-confined concrete but
which should be able to predict the behavior of concrete confined with other materials, as
long as the equation for the lateral dilation behaviour of concrete is accurate. Hence, once
the thickness ratio of smaller specimen to the bridge-specimen (ti/t, in Figure 1) complies
with Equation 5, the bridge-specimen, that is specimen 2 in Figure 1, will has a stress-strain
curve similar to the smaller specimen, that is specimen 1 in Figure 1. Furthermore, the axial
size effect expression Equation 4 can be used to convert the axial-stress/axial-strain
relationship of specimen 2 into that of specimen 3, and vice versa.

Once the above axial and lateral size effect expressions have been calibrated and validated,
the axial-stress/axial-strain relationship of a full-scale specimen (e.g. specimen 3 in Figure 1)
can be derived from that of a tested small-scale specimen like specimen 1 in following steps:

1. The confined concrete specimens 1 to 3 in Figure 1 consist of identical concrete and
confining steel tube material properties, and where the thickness of the steel tube,
diameter and length are varied as shown in Figure 1;

2. The thickness of the smaller specimen t; can be determined from the known t3 by
using the lateral size effect expression (Equation 5) in which the lateral size of the
specimen N equals dyr.1/dpr-3;

3. The tested axial-stress/axial-strain relationship of specimen 1 should be the same as
that of specimen 2;

4, As specimens 2 and 3 have the same diameter and thickness of steel tube, and
where length only varies; using the axial size effect expression (Equation 4) can be
used to convert stress-axial train curve of specimen 2 into that of specimen 3;

Besides aiming to verify the axial and lateral size effect expressions of Equations 4 and 5,
these tests also aim to confirm following assumptions proposed in Chapter 2, that is:

1. the angle of wedge sliding plane to the longitudinal axis, a proposed in Chapter 2, is
given
a=26°+ chﬂ X 20° Equation 6

co

where the confinement stress o.,, can appropriately treat as constant at
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2yt

Ocon = Equation 7
dpr
once the steel tube has been yielded at f,.
2. the global lateral strain within the wedge region should be bigger than those out of

the wedge region.

2. Design of specimens

The concrete used in this test with an aggregate size of 10 mm, had about a 50MPa
compressive strength. In a half day, the concrete was poured, vibrated and left to cure for a
minimum of 28 days as specified. A wooden formwork and safety straps with buckles were
used to hold the cylinders in place during the pouring and curing process as shown below in
Figure 2.

Figure 2: Pouring and curing steel tube confined concrete

The general information for the test steel tube confined concrete is shown below in Table 1
where the thirteen columns show contents as follows in sequence: @test series
number; @specimen name, in which the first two letters represent the “Group Name” of
this specimen, e.g. specimen GA-1A is specimen 1A in Group A; @the age of concrete at
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testing; @the yield stress of steel tube provided by manufacturer; @the external
diameter of steel tube recommended by manufacturer; @ the thickness of steel tube
recommended by manufacturer; @the height of steel tube; the number of lateral strain
gauges per height that is at one level; @individual distance between bottom platen and a
specific height level of lateral strain gauges; the number of axial strain gauges at a given
height; @individual distance between bottom platen and a specific height level of axial
strain gauges; @number of 10mm strain gauges per specimen; @number of LVDTs per
specimen.

With the exception of series 3 which had only one repetition, each series comprised three
replicate specimens.

Three groups of specimens, whose diameters are the same but lengths are varying, are
designed to verify the axial size effect expression, Equation 4, for the axial size of the
specimen nay. Group A in Table 1 is composed of test series 1, 2 and 3 whose diameters are
all 76.1 mm, and lengths are 250, 500 and 750 mm. Group B comprises test series 4, 5 and 6
whose diameters are 88.9 mm, and lengths are 250, 500 and 750 mm. Group C includes test
series 11, 12 and 13 whose diameters are 114.3 mm, and lengths are 250, 500 and 750 mm.
The material properties, such as the compressive strength of concrete f.,, the yield stress of
steel tube f, and the thickness of steel tube t, are all constant in each group. Hence, the
confinement stress oo, is constant at any given applied axial stress o, in each group.

Two groups of test series, whose diameters are varying and lengths are constant, are
designed to verify the lateral size effect expression, equation 5, for lateral size of the
specimen njt. Group D is composed by test series 7 and 9 whose lengths are both 250 mm,
and diameter is 101.6 and 114.3 mm separately. Group E includes test series 8 and 10
whose size dimensions are equal to test series 7 and 9 separately. The compressive strength
of concrete f, is constant in these two groups.

The yield stress of steel tube f, in Group A, Group C and Group E is 250 MPa, while in Group
B and Group D it is 350 MPa.
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3. Instrumentation and test rig

The machine used for this concentric compressive load testing is the Amsler, a device
capable of applying large compression loads between two plates by using pressurised oil.
Metal plates are dental pasted to the top and bottom of each specimen to ensure the
specimen has a flat and parallel surface for the platens to apply loading to as seen in Figure
3. The diameter of metal plate is always about 5mm to 10mm smaller than the inner
diameter of steel tube as shown in Figure 4, therefore, the testing load is only applied
directly to the confined concrete such that possible steel tube buckling can be avoided.

Figure 3: Example of specimen ready to test

The proposed axial size effect expression, Equation 4, is based on the on shear friction
mechanism such that the global axial strain is required. Therefore, 4 linear variable
differential transformers (LVDTs) are fixed at every corner of the square loading platen of
the testing machine as shown in Figure 4 to measure and record the whole deformation
over the length of the test which can be used to calculate the global axial strain. Figure 4
shows the front, side and plan views of test rig of which the 4 LVDT are labelled as L-NW, L-
SE, L-NE and L-SW separately. The name of “L-NW, L-SE, L-NE and L-SW” means that the
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location of LVDT is on the North-West, South-East, North-East and South-West direction of
tested specimen as shown in Figure 4(b).

360mm

(a) Front/Side View (b) Plan View

Figure 4: Front, side and plan views of test rig

In order to verify the assumption of ignoring the bond between concrete and confinement
material that has been adopted by deriving the axial size effect expression, Equation 4 and
lateral size effect expression, Equation 5, specimen GB-4A is attached three axial strain
gauges 120° equally apart around the circumference at heights of 50, 125 and 200 mm from
the bottom separately as shown in Figure 5. Additionally, specimens GB-4B and GB-4C are
attached two axial strain gauges 180° around the circumference at heights of 50 and 125
mm from the bottom separately as shown in Figure 6. These axial strain gauges should
indicate zero or very small value during loading process if the above assumption is right.
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Figure 5: Strain gauges of specimen GB-4A

B R IIRIRIRRRS
9626920996256 2% eV a%%s 2% %

Lateral strain gauge

Axial strain gauge

75

50 |

(a) Front View (b) Plan View

Figure 6: Strain gauges of specimen GB-4B and GB-4C

The proposed lateral size effect expression, Equation 5 is based on the shear friction
mechanism that requires the measurement of the global lateral strain which can only be
caught in the wedge region (Visintin et al. 2014 in Chapter 2). So, specimens GA-1A, GD-7A,
GE-8A, GD-9A, GE-10A and GC-11A were instrumented with 4 lateral stain gauges 90° apart
around the circumference and every 50mm along the height. As shown in Figure 7, each
specimen has a total of 16 lateral strain gauges that is 4 lateral strain gauges at each level to
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measure the lateral strain at each level which can be used to calculate the confinement
stress at each level.
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Figure 7: Strain gauges of specimens GA-1A, GD-7A, GE-8A, GD-9A, GE-10A and GC-11A

For each specimen the testing process is as follows:

1.

A A o

10.

By measuring the distance between the edge of the bottom platen and centre of
specimen to confirm that the specimen is on the centre of platen to ensure
consistent loading;

Bring the crosshead (top loading platen) down into position just above the specimen;
Set the LVDTs in position allowing enough room for travel during the test;

Start recording on the computer the strain gauges, LVDT displacements and load;
Open the valve to apply force on the bottom platen which begins to lift;

Carefully adjust the load rate via the valve dial as the platen picks up the weight of
the load and starts to compress;

The load process is controlled by two steps. At beginning, the load rate is 120
KN/min till about 60% proposed peak load (Chen 2005). Then change to
displacement control at 0.2 mm/min till the test finishes;

Slow and control the test around the peak load and slowly unload the specimen to
capture the unloading curve data if applicable;

The loading process is stopped once the LVDTs have reached their range or the test
specimen has failed which is always accompanied by a muffled noise and when the
resisting load will decrease by more than 30% immediately (Chen 2005);

Photograph the tested specimen;
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11. Cut the steel tube open to check the failure mechanism of the concrete and measure
the dimensions of wedge;

The last process step is to verify the proposed angle of the wedge sliding plane relative to
the longitudinal axis, Equation 6. It is also worthy noting that using constant load and
displacement controls will result in differnent stress application rate for specimens having
differnet diameter or strain rates for specimens having different length.

4. Material test results

Twelve control specimens (100x200 concrete cylinders) were tested throughout the testing
period and details are shown in Table 2. The nine columns of Table 2 show contents as
follows in sequence: @cylinder number; @the age of concrete at testing date;
@diameter of cylinder; @height of cylinder; @weight of cylinder; @density of cylinder;
@peak load; compressive strength; @average compressive strength of this series test.
The typical failure model of control specimen is circumferential wedge model as shown in
Figure 8.

Figure 8: Typical failure model of control specimen

208



Table 2 — Summary of control cylinder results

Cylinder Age Diameter Length | Weight Density Load Strength Average
No. (Days) (mm) (mm) (g) (Kg/m?) (KN) (MPa) (MPa)
O, @ ® @ ® ® @ O,
Cla 88 100.2 197.3 3544.6 2279.5 381.3 48.4
Clb 88 100.6 198.5 3572.6 2265.5 409.5 51.5 50.0
Clc 88 100.4 198.4 3570.1 2274.1 395.5 50.0
C2a 92 100.2 196.7 3499.3 2257.2 344.5 43.7
C2b 92 99.8 196.2 3490.0 22751 346.0 44.3 46.1
C2c 92 99.3 197.0 3549.6 2327.8 390.2 50.4
C3a 118 99.8 196.9 3554.6 2308.9 3713 47.5
C3b 118 100.1 199.5 3576.6 2279.2 402.5 51.2 49.4
C3c 118 99.5 199.4 3577.1 2308.3 385.5 49.6
Cda 137 99.9 197.7 3479.3 2246.4 374.5 47.8
Cdb 137 100.6 199.2 3499.0 2211.0 398.0 50.1 49.6
Cac 137 99.7 199.0 3555.6 2289.8 398.2 51.0

A total of three coupon tests were undertaken for each steel tube member to minimize
random error. The general information of the steel coupon tests is shown below in Table 3
where the eight columns show contents as follows in sequence: @steel coupon number;
@the yield stress of steel tube recommended by manufacturer; @the ultimate stress of
steel tube recommended by manufacturer; @the thickness of steel tube recommended by
manufacturer; @test result of yield stress; @test result of tensile strain at yield stress;
@test result of ultimate stress; test result of tensile strain at ultimate stress. An
example of coupon test dimensions has been shown in Figure 9.
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Figure 9: Example of steel coupon test dimension

Table 3 — Summary of steel coupon tests

I Recommend value of Manufacturer Test Results

CCS)E(:Zn Yield Ultimate Thickness, t Yield Strain Ultimate Strain
No. stress f, stress f, (mm) stress f, atf, stress f, atf,,

(MPa) (MPa) (MPa) g (MPa) £y

@ @ ® @ ® ® @
Sla 250 320 3.6 253 0.221 326 2.74
S1ib 250 320 3.6 269 0.251 328 3.58
Slc 250 320 3.6 260 0.252 332 1.69
S2a 250 320 4.5 277 0.253 366 2.57
S2b 250 320 4.5 282 0.324 364 3.26
S2c 250 320 4.5 288 0.322 367 2.49
S3a 350 430 3.2 332 0.218 439 3.56
S3b 350 430 3.2 338 0.297 437 2.89
S3c 350 430 3.2 346 0.265 440 2.21

210




5. Test results

There are a total of five types of raw and corrected test results for each specimen as
labelled in Column 3 in Table 4 that includes:

1) Type one: Load/axial-displacement relationship, in which the legend of L-NW, L-SE, L-NE
and L-SW is corresponding to the LVDTs in Figure 4;

2) Type two: Load/global-axial-strain relationship, in which the global strain equals the
data of the LVDT divided by the length of the specimen and the legend of NW,
SE, NE and SW is corresponding to the LVDT of L-NW, L-SE, L-NE and L-SW in
Figure 4;

3) Type three: Load/local-axial-strain relationship, in which the legend ASG-direction-
number represents the height of the axial strain gauge in mm away from the
bottom and on the South, East, North or West faces of the specimen as
shown in Figures 5 and 6;

4) Type four: Load/lateral-strain relationship, in which the legend LSG-direction-number
represents the height of the lateral strain gauge in mm away from the
bottom and on the South, East, North or West faces of specimen as shown in
Figures 5to 7;

5) Type five: Load/global and load/local strains relationship, which compares the average
of the local axial strains for each layer with the global axial strain;

The nine columns of Table 4 show the contents as follows in sequence: @specimen name;
@Figure number; @Figure type; @content of this figure; @displacement or strain at
peak point of the mean curve for this figure; @peak load of the mean curve for this figure
in column (2); @displacement or strain at end point of the mean curve for this figure;
end load of the mean curve for this figure; @the stiffness at 40% of peak load for the
mean curve, K4 that is determined by the secant slope at 40% of peak load; reason for
stopping the test. The units of columns @ to @ in Table 4 refer to corresponding figures
and the “NA” means that this value is not available or not reliable (e.g. the recorded
displacement at peak load for raw test result contains bedding down and other random
system error which is required to be corrected first).

The corresponding failure photos and sliding angle a of these specimens are shown in Table
5. The six columns of Table 5 show contents as follows in sequence: @specimen name;
@the shape of steel tube after test; @failure model of confined concrete; @proposed
expression for the angle of the principal sliding plane with confinement, are, (Equation 6);
@the measured angle of the principal sliding plane with confinement, ayp; @the ratio of
Otheo tO OlExp-
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Figure 10: Load/axial-displacement relationship
Specimen GA-1A (Corrected data)
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Figure 11: Load/axial-displacement relationship
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Specimen GA-1A (Corrected data)
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Figure 12: Load/global-axial-strain relationship
Specimen GA-1A (Raw data)
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Figure 13: Load/lateral-strain relationship
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Specimen GA-1A (Raw data)
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Figure 14: Load/lateral-strain relationship
Specimen GA-1A (Raw data)
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Figure 15: Load/lateral-strain relationship
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Specimen GA-1A (Raw data)
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Figure 16: Load/lateral-strain relationship
Average results of Specimen GA-1A (Raw data)
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Figure 17: Load/lateral-strain relationship
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Specimen GA-1B (Raw data)
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Figure 18: Load/axial-displacement relationship
Specimen GA-1B (Corrected data)
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Figure 19: Load/axial-displacement relationship
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Specimen GA-1B (Corrected data)
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Figure 20: Load/global-axial-strain relationship
Specimen GA-1C (Raw data)
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Figure 21: Load/axial-displacement relationship
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Specimen GA-1C (Corrected data)
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Figure 22: Load/axial-displacement relationship
Specimen GA-1C (Corrected data)
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Figure 23: Load/global-axial-strain relationship
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Specimen GA-2A (Raw data)
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Figure 24: Load/axial-displacement relationship
Specimen GA-2A (Corrected data)
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Figure 25: Load/axial-displacement relationship
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Specimen GA-2A (Corrected data)
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Figure 26: Load/global-axial-strain relationship
Specimen GA-2B (Raw data)
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Figure 27: Load/axial-displacement relationship
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Specimen GA-2B (Corrected data)
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Figure 28: Load/axial-displacement relationship
Specimen GA-2B (Corrected data)
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Figure 29: Load/global-axial-strain relationship
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Specimen GA-2C (Raw data)
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Figure 30: Load/axial-displacement relationship
Specimen GA-2C (Corrected data)
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Figure 31: Load/axial-displacement relationship
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Figure 32: Load/global-axial-strain relationship
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Figure 33: Load/axial-displacement relationship
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Figure 34: Load/axial-displacement relationship
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Figure 35: Load/global-axial-strain relationship
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Figure 36: Load/axial-displacement relationship
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Figure 37: Load/axial-displacement relationship
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Specimen GA-3B (Corrected data)
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Figure 38: Load/global-axial-strain relationship
Specimen GB-4A (Raw data)
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Figure 39: Load/axial-displacement relationship
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Specimen GA-4A (Corrected data)
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Figure 40: Load/axial-displacement relationship
Specimen GB-4A (Corrected data)
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Figure 41: Load/global-axial-strain relationship
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Figure 42: Load/local-axial-strain relationship
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Figure 43: Load/local-axial-strain relationship
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Figure 44: Load/local-axial-strain relationship
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Figure 45: Load/global and load/local strains relationship
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Figure 46: Load/lateral-strain relationship
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Figure 47: Load/lateral-strain relationship
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Figure 48: Load/lateral-strain relationship
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Figure 49: Load/lateral-strain relationship
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Specimen GB-4B (Raw data)
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Figure 50: Load/axial-displacement relationship
Specimen GB-4B (Corrected data)
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Figure 51: Load/axial-displacement relationship
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Figure 52: Load/global-axial-strain relationship
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Figure 53: Load/local-axial-strain relationship
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Specimen GB-4B (Raw data)
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Figure 54: Load/local-axial-strain relationship
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Figure 55: Load/global and load/local strains relationship
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Figure 56: Load/lateral-strain relationship
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Figure 57: Load/lateral-strain relationship

247




Load (KN)

700

600

500

400

300

200

100

Specimen GB-4B (Raw data)

/K MR ONPRAT TS
Y Badiad
o

{

{

e | SG-ave-50

== = |SG-ave-125

T T T 1

5000 10000 15000 20000
Average Lateral strain of each layer (ug)

Figure 58: Load/lateral-strain relationship
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Figure 59: Load/axial-displacement relationship
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Specimen GA-4C (Corrected data)
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Figure 60: Load/axial-displacement relationship
Specimen GA-4C (Corrected data)
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Figure 61: Load/global-axial-strain relationship
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Figure 62: Load/local-axial-strain relationship

Load (KN)

800

700

600

500

400

300

200

100

Specimen GA-4C (Raw data)

= ) L

0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Local axial strain (%)

ASG-S5-125

== = ASG-N-125

Figure 63: Load/local-axial-strain relationship
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Figure 64: Load/global and load/local strains relationship
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Figure 65: Load/lateral-strain relationship
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Figure 66: Load/lateral-strain relationship

Load (KN)

800

700

600

500

400

300

200

100

Specimen GA-4C (Raw data)

LSG-ave-50

== = |SG-ave-125

0 2000 4000 6000 8000 10000

Average Lateral strain of each layer (ue)

Figure 67: Load/lateral-strain relationship
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Figure 68: Load/axial-displacement relationship
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Figure 69: Load/axial-displacement relationship
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Specimen GB-5A (Corrected data)
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Figure 70: Load/global-axial-strain relationship
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Figure 71: Load/axial-displacement relationship
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Specimen GB-5B (Corrected data)
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Figure 72: Load/axial-displacement relationship
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Figure 73: Load/global-axial-strain relationship
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Specimen GB-5C (Raw data)
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Figure 74: Load/axial-displacement relationship
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Figure 75: Load/axial-displacement relationship
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Specimen GB-5C (Corrected data)
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Figure 76: Load/global-axial-strain relationship
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Figure 77: Load/axial-displacement relationship
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Specimen GB-6A (Corrected data)
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Figure 78: Load/axial-displacement relationship
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Figure 79: Load/global-axial-strain relationship
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Specimen GB-6B (Raw data)
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Figure 80: Load/axial-displacement relationship
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Figure 81: Load/axial-displacement relationship
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Specimen GB-6B (Corrected data)
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Figure 82: Load/global-axial-strain relationship
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Figure 83: Load/axial-displacement relationship
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Specimen GB-6C (Corrected data)
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Figure 84: Load/axial-displacement relationship
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Figure 85: Load/global-axial-strain relationship
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Specimen GD-7A (Raw data)
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Figure 86: Load/axial-displacement relationship
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Figure 87: Load/axial-displacement relationship
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Specimen GD-7A (Corrected data)
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Figure 88: Load/global-axial-strain relationship
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Figure 89: Load/lateral-strain relationship
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Figure 90: Load/lateral-strain relationship
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Figure 91: Load/lateral-strain relationship
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Specimen GD-7A (Raw data)
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Figure 92: Load/lateral-strain relationship
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Figure 93: Load/lateral-strain relationship
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Specimen GD-7B (Raw data)
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Figure 94: Load/axial-displacement relationship
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Figure 95: Load/axial-displacement relationship
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Specimen GD-7B (Corrected data)
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Figure 96: Load/global-axial-strain relationship
Specimen GD-7C (Raw data)

900

800 -7 =

700 I

600 ,
g 500 L-NW
T = == |-SE
§ 400

s o | -NE

300 — . Lsw

200

100 -

0 T T T T 1

0 5 10 15 20 25
Displacement (mm)

Figure 97: Load/axial-displacement relationship
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Specimen GD-7C (Corrected data)
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Figure 98: Load/axial-displacement relationship
Specimen GD-7C (Corrected data)
900
800 ——
700
600 I
Ezi 500 I NW
T - = SE
§ 400
I e » NE
300
I - o oSW
200 I Ave
100 l
0 T T T T T 1
0 2 4 6 8 10

Global axial strain (%)

Figure 99: Load/global-axial-strain relationship
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Specimen GE-8A (Raw data)
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Figure 100: Load/axial-displacement relationship
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Figure 101: Load/axial-displacement relationship
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Specimen GE-8A (Corrected data)
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Figure 102: Load/global-axial-strain relationship
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Figure 103: Load/lateral-strain relationship
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Figure 104: Load/lateral-strain relationship
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Figure 105: Load/lateral-strain relationship
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Specimen GE-8A (Raw data)
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Figure 106: Load/lateral-strain relationship
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Figure 107: Load/lateral-strain relationship

272




Specimen GE-8B (Raw data)
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Figure 108: Load/axial-displacement relationship
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Figure 109: Load/axial-displacement relationship
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Specimen GE-8B (Corrected data)
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Figure 110: Load/global-axial-strain relationship
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Figure 111: Load/axial-displacement relationship
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Specimen GE-8C (Corrected data)
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Figure 112: Load/axial-displacement relationship
Specimen GE-8C (Corrected data)
i
iz‘_ NW
T = o= SE
S
e o NE
- o« «SW
Ave
2 4 6 8 10

Global axial strain (%)

Figure 113: Load/global-axial-strain relationship
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Specimen GD-9A (Raw data)
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Figure 114: Load/axial-displacement relationship
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Figure 115: Load/axial-displacement relationship
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Specimen GD-9A (Corrected data)
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Figure 116: Load/global-axial-strain relationship
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Figure 117: Load/lateral-strain relationship
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Specimen GD-9A (Raw data)
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Figure 118: Load/lateral-strain relationship
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Figure 119: Load/lateral-strain relationship
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Specimen GD-9A (Raw data)
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Figure 120: Load/lateral-strain relationship
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Figure 121: Load/lateral-strain relationship
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Specimen GD-9B (Raw data)
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Figure 122: Load/axial-displacement relationship
Specimen GD-9B (Corrected data)
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Figure 123: Load/axial-displacement relationship
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Specimen GD-9B (Corrected data)
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Figure 124: Load/global-axial-strain relationship
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Figure 125: Load/axial-displacement relationship
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Specimen GD-9C (Corrected data)
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Figure 126: Load/axial-displacement relationship
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Figure 127: Load/global-axial-strain relationship
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Specimen GE-10A (Raw data)
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Figure 128: Load/axial-displacement relationship
Specimen GE-10A (Corrected data)
1200
1000 ”/I”\~%_
)
800 -
z /’ L-NW
S 600 1
T = == [-SE
3 /]
e« L-NE
400 - — . Lsw
L-Ave
200 -
0 T T T T T 1
0 5 10 15 20 25

Displacement (mm)

Figure 129: Load/axial-displacement relationship
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Specimen GE-10A (Corrected data)
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Figure 130: Load/global-axial-strain relationship
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Figure 131: Load/lateral-strain relationship
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Specimen GE-10A (Raw data)
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Figure 132: Load/lateral-strain relationship
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Figure 133: Load/lateral-strain relationship
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Specimen GE-10A (Raw data)
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Figure 134: Load/lateral-strain relationship
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1200
1000 i g e e o e e - e e
800 -
;z: = + =LSG-Ave-50
< 600 e = SG-Ave-100
3 1 — = LSG-Ave-150
400 LSG-Ave-200
LSG-Ave-All
200
0 T T T T 1

5000 10000 15000 20000 25000
Lateral strain (pe)

Figure 135: Load/lateral-strain relationship
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Specimen GE-10B (Raw data)
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Figure 136: Load/axial-displacement relationship
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Figure 137: Load/axial-displacement relationship
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Specimen GE-10B (Corrected data)
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Figure 138: Load/global-axial-strain relationship
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Figure 139: Load/axial-displacement relationship
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Specimen GE-10C (Corrected data)
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Figure 140: Load/axial-displacement relationship
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Figure 141: Load/global-axial-strain relationship
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Specimen GC-11A (Raw data)
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Figure 142: Load/axial-displacement relationship
Specimen GC-11A (Corrected data)
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Figure 143: Load/axial-displacement relationship
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Specimen GC-11A (Corrected data)
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Figure 144: Load/global-axial-strain relationship
Specimen GC-11A (Raw data)
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Figure 145: Load/lateral-strain relationship
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Specimen GC-11A (Raw data)
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Figure 146: Load/lateral-strain relationship
Specimen GC-11A (Raw data)
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Figure 147: Load/lateral-strain relationship
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Specimen GC-11A (Raw data)
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Figure 148: Load/lateral-strain relationship
Average results of Specimen GC-11A (Raw data)
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Figure 149: Load/lateral-strain relationship
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Specimen GC-11B (Raw data)
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Figure 150: Load/axial-displacement relationship
Specimen GC-11B (Corrected data)
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Figure 151: Load/axial-displacement relationship
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Specimen GC-11B (Corrected data)
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Figure 152: Load/global-axial-strain relationship
Specimen GC-11C (Raw data)
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Figure 153: Load/axial-displacement relationship

295




Specimen GC-11C (Corrected data)

1200
1000 //'
800
g / L-NW
= 600
T o= == |-SE
S
w o | -NE
400 . LW
L-Ave
200
0 T T T T 1
0 5 10 15 20 25
Displacement (mm)
Figure 154: Load/axial-displacement relationship
Specimen GC-11C (Corrected data)
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Figure 155: Load/global-axial-strain relationship
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Specimen GC-12A (Raw data)
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Figure 156: Load/axial-displacement relationship
Specimen GC-12A (Corrected data)
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Figure 157: Load/axial-displacement relationship
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Specimen GC-12A (Corrected data)
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Figure 158: Load/global-axial-strain relationship
Specimen GC-12B (Raw data)
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Figure 159: Load/axial-displacement relationship
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Specimen GC-12B (Corrected data)
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Figure 160: Load/axial-displacement relationship
Specimen GC-12B (Corrected data)
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Figure 161: Load/global-axial-strain relationship
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Specimen GC-12C (Raw data)
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Figure 162: Load/axial-displacement relationship
Specimen GC-12C (Corrected data)
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Figure 163: Load/axial-displacement relationship
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Specimen GC-12C (Corrected data)
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Figure 164: Load/global-axial-strain relationship
Specimen GC-13A (Raw data)
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Figure 165: Load/axial-displacement relationship
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Specimen GC-13A (Corrected data)
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Figure 166: Load/axial-displacement relationship
Specimen GC-13A (Corrected data)
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Figure 167: Load/global-axial-strain relationship
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Specimen GC-13B (Raw data)
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Figure 168: Load/axial-displacement relationship
Specimen GC-13B (Corrected data)
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Figure 169: Load/axial-displacement relationship
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Specimen GC-13B (Corrected data)
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Figure 170: Load/global-axial-strain relationship
Specimen GC-13C (Raw data)
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Figure 171: Load/axial-displacement relationship
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Specimen GC-13C (Corrected data)
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Figure 172: Load/axial-displacement relationship
Specimen GC-13C (Corrected data)
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Figure 173: Load/global-axial-strain relationship
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Table 5: Photos of tested specimens

. ATheo Olexp OTheo
No. After test Failure model —_—
(degree) | (degree) | %Exp
13 —_——
GA-1A ; 39.4 36.6 | 1.08
GA-1B 39.4 38.8 | 1.02
GA-1C 39.4 409 | 0.96

single sliding plane
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Table 5: Photos of tested specimens (continued)

. QTheo Qexp QTheo
No. After test Failure model I
(degree) | (degree) | ®Exp
GA-2A 39.4 43.7 0.90
GA-2B 39.4 36.3 1.09
GA-2C 39.4 34.9 1.13
Bending, shear failure
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Table 5: Photos of tested specimens (continued)

a a QTh
No. After test Failure model Theo Bp eo
(degree) | (degree) | %Exp
GA-3A 394 36.6 1.08
GA-3B 394 36.9 1.07

single sliding plane
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Table 5: Photos of tested specimens (continued)

. Oltheo Olexp OTheo
No. After test Failure model D
(degree) | (degree) | @Exp
GB-4A 39.3 35.2 1.12
GB-4B 39.3 33.7 1.17
GB-4C 39.3 40.0 0.98
circumferential wedge
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Table 5: Photos of tested specimens (continued)

. QTheo Olexp OTheo
No. After test Failure model R
(degree) | (degree) | ®Exp
GB-5A 39.3 30.0 1.31
circumferential wedge
GB-5B 39.3 315 1.25
GB-5C 39.3 32.8 1.20

single sliding plane
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Table 5: Photos of tested specimens (continued)

. OlTheo aExp aTheo
No. After test Failure model
(degree) | (degree) | QExp
GB-6A 39.3 35.0 1.12
GB-6B 39.3 42.0 0.94
single sliding plane
GB-6C 39.3 36.0 1.09
single sliding plane
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Table 5:

Photos of tested specimens (continued)

. Oltheo Olexp OTheo

No. After test Failure model -
(degree) | (degree) | %Exp
GD-7A 37.6 38.2 0.98
GD-7B 37.6 315 | 1.19
GD-7C 37.6 42.0 0.89

circumferential wedge
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Table 5: Photos of tested specimens (continued)

. OlTheo OlExp OTheo

No. After test Failure model —

(degree) | (degree) | %Exp

GE-8A 36.9 60.0 0.62

GE-SB 36.9 42.0 0.88
single sliding plane

GE-8C 36.9 81.0 0.46
single sliding plane
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Table 5: Photos of tested specimens (continued)

. aTheo aExp aTheo

No. After test Failure model
(degree) | (degree) | QExp
GD-9A 37.6 39.0 0.96
GD-9B 37.6 345 1.09
GD-9C 37.6 41.2 0.91

circumferential wedge
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Table 5: Photos of tested specimens (continued)

. QTheo Qexp QTheo
No. After test Failure model —
(degree) | (degree) | QExp
GE-10A 36.9 42.0 0.88
GE-10B 36.9 38.5 0.96
GE-10C 36.9 39.5 0.94
single sliding plane
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Table 5: Photos of tested specimens (continued)

. OlTheo Olexp ATheo

No. After test Failure model -
(degree) | (degree) | QExp

GC-11A 39.4 41.0 0.96
GC-11B 39.4 38.0 1.04
GC-11C 39.4 44.5 0.89

single sliding plane
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Table 5: Photos of tested specimens (continued)

. OTheo Olexp OTheo
No. After test Failure model -
(degree) | (degree) | QExp
GC-12A 39.4 40.0 0.99
GC-12B 39.4 38.0 1.04
GC-12C 39.4 36.5 1.08
Bending, shear failure
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Table 5: Photos of tested specimens (continued)

. OlTheo OlExp OTheo

No. After test Failure model -
(degree) | (degree) | %Exp

GC-13A 39.4 41.0 0.96
GC-13B 39.4 39.0 1.01
GC-13C 39.4 60.0 0.66

single sliding plane
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6. Results of analysis and discussion
6.1 Buckling

The loading platen is always flat during the loading process which forces the metal plate flat
as well. Figure 174 shows the enlarged top end of specimen GA-2C after testing in which
there is local crushing on left-side and small gap on right-side of the metal plate. Hence,
even though some specimens, such as Specimen GA-2C as shown in Table 5, have significant
curvature, the load/axial-displacement relationships recorded from different LVDTs, are still
almost identical as shown in Figures 30 and 31. Hence this type of specimen was loaded
uniformly so that failure is due to buckling inducing flexure and this has been referred to in
Table 5 as bending, shear failure where bending relates to the moment induced whilst
buckling and shear failure to the shear sliding wedges. It would, therefore, be expected that
the stress/global-axial-strain relationship will have a steeper descent than expected from its
material properties due to the moment induced by buckling.

Load Platen |

Local crush -

T T—"

Metal plate |

<—| Small gap |%

Figure 174: Enlarged top end of specimen GA-2C

6.2 Axial size effect

Three groups of specimen (Group A, Group B and Group C in Table 4), whose diameters are
the same and lengths were varied in each group, were designed to verify the axial size effect
expression, Equation 4, for the axial size of the specimen na.y. For Group A, whose diameters
were all 76.1 mm, and had lengths of 250, 500 and 750 mm, the load/mean-value-of-global-
axial-strains relationships derived from individual test results of load/global-axial-strains
relationship (Figures 12, 20, 23, 26, 29, 32, 35 and 38) are compared in Figure 175; it can be
seen that there is little variation in the groups of identical specimens such as 2A, 2B and 2C.
Similarly, the load/mean-value-of-global-axial-strains relationships for Group B and Group C
are shown in Figures 176 and 177 separately.
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Figure 175: Load/mean-value-of-global-axial-strains relationships
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Figure 176: Load/mean-value-of-global-axial-strains relationships
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Figure 177: Load/mean-value-of-global-axial-strains relationships

It can be seen from Figure 175 that the stiffness of the ascending curves are only slightly
different. However, the stiffnesses are obviously varying for the descending branch. For
example, the solid lines in Figure 175 are the test results of specimens GA-1A, GA-1B and
GA-1C that have the smallest decreasing slope for their shortest length or height of
specimen 250 mm in Group A. When the length increases to 500 mm, the decreasing slope
of specimens GA-2A, GA-2B and GA-2C is more rapid. Increasing the length to 750 mm will
result in an even more rapid decreasing slope. Hence it can be said that the ascending
branches are size independent, whereas, the descending branches are size dependent.
Furthermore and very importantly the compressive concrete ductility decreases
considerably with increases in height.

Figures 176 and 177 are the load/mean-value-of-global-axial-strains relationships for
specimens in Group B and Group C separately that give the similar trends as those shown in
Figure 175 for specimens in Group A. In summary:

1. The curves in Figures 175 to 177 are almost identical till the applied load reaches
about 40% of peak load which can be defined as a diverging load;

2. Once the loading process passes the diverging point (appropriate 40% of peak load),
the ascending curves are slightly more flexible for longer specimens;

3. The descending branch of each curve varies significantly that is decreasing quicker
for longer specimens. However it may be worth noting that part of this is due to
buckling as discussed in Section 6.1 that is it is not completely a material property.

4, The above two trends can also be combined as that once the loading process passes
the diverging point (appropriate 40% of peak load), the variation of global axial
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strains due to the varying of lengths is continuing to increase no matter whether in
the loading or unloading period.

As discussed in the introduction, the axial size effect expression (Equation 4) can be used to
derive the theoretical axial-stress/global-axial-strain relationships from one tested result for
confined concrete specimens consisting of both identical concrete and confining steel tube
material properties, and where the length of the specimen only varies. So, the mean test
result of the 500 mm length specimens for each group is selected to be the base line from
which the theoretical results of 250 and 750 mm length specimens are derived and shown in
Figures 178 to 180 for Group A, Group B and Group C separately. The mean experimental
result for each length of specimen is shown as solid lines in Figures 178 to 180 (Exp. L=750,
Exp. L=500 and Exp. L=250) has reasonable correlation with the theoretical results (Theo.
L=750 and Theo. L=250); bearing in mind that the stiffnesses of the 750 mm specimens are
increased by buckling. More importantly, the theoretical results comply with all of the
previous four trends concluded from test results of Figures 175 to 177. It is worthy to note
that the test result of any length specimen can be treated as a base line (e.g. L,,=250 mm or
750 mm) and the derived theoretical results still have reasonable correlation with the
experimental results and comply with all of the previous four trends concluded from test
results of Figures 175 to 177.
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Figure 178: Equation 4 for specimens of Group A
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Figure 179: Equation 4 for specimens of Group B
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Figure 180: Equation 4 for specimens of Group C

Lateral size effect
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Theoretical analysis in Chapter 4 of this thesis has shown that for specimen 1 with
prism diameter d,r.1 and thickness of steel tube t;, specimen 2 with prism diameter d,.,
requires a thickness of steel tube t,, where t, is adopted from Equation 5, to provide the
same axial-stress/global-axial-strain relationship as specimen 1. Two groups of test
series (Groups D and Group E), whose diameters are varied and lengths are constant
in each group, were designed to verify the lateral size effect expression, equation 5,
for lateral size of the specimen nj;:.. The parameter of exponent x in Equation 5 is proposed
by Chen et al. (2014d) in Chapter 4 of this thesis and valued at 1.08 in these two
groups. For Group D, whose lengths are both 250 mm, and diameter is 101.6 and
114.3 mm, the axial-stress/mean-value-of-global-axial-strain relationships are derived
from individual test result of load/global-axial-strain relationship (Figures 88, 96, 99, 116,
124 and 127) and compared in Figure 181. Similarly, the axial-stress/mean-value-of-global-
axial-strain relationships for Groups E are shown in Figures 182.
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Figure 181: Equation 5 for specimens of Group D
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Group E
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Figure 182: Equation 5 for specimens of Group E

It can be seen from Figures 181 and 182 that the axial-stress/global-axial-strain curves are
almost identical for vary the diameters and steel tube thicknesses in which the lateral size
effect expression, equation 5 is adopted.

6.4 Sliding angle o

The confinement stress o..ncan be calculated by inserting the yield stress of steel tube f,
(column 4 in Table 1) and the thickness of steel tube t (column 6 in Table 1) into Equation 7.
Knowing the confinement stress o.n, the theoretical result of sliding angle athe, can be
determined by Equation 6 that is proposed in Chapter 2 of this thesis. These are compared
in Table 5 with the experimental results. It can be seen from Figure 183 that except for 3
outliers (specimens GE-8A, GE-8C and GC-13C) the theoretical results arhe, from Equation 6
have a good correlation with the experimental results ag,. Moreover, except for 3 outliers
the statistics of the 35 results in Figure 183 are that mean value of drneo/0exp is 103% with a
standard derivation of 0.11.
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Figure 183: Equation 6

6.5 Wedge effect on global lateral strain

The general information for the specimens attached with lateral strain gauges is shown
below in Table 6 where the eight columns show contents as follows in sequence:
@specimen name; @Figure number; @middle height of wedge region shown in the
photo of Table 5; @height of maximum lateral strain shown in Table 4; @mean value of
lateral strain gauges for the height of column (3) at peak load; @mean value of lateral
strain gauges for the height of column (3) at end of tested point; @height of minimum
lateral strain shown in Table 4; mean value of lateral strain gauges for the height of
column (6) at peak load; @mean value of lateral strain gauges for the height of column (6)
at end of tested point; ratio of mean lateral strain for different heights at peak load point,
column (5) to column (8); @ratio of mean lateral strain for different heights at end of
tested point, column (6) to column (9). The mean value of columns @ to @ and to @
has been shown in the last row of Table 6. NA in the last row of Table 6 means that this
mean column value is useless. All the information of above columns @ to @ can be found
in Table 4.

It has been theoretically discussed in Chapter 4 of this thesis that global lateral strain €tgp is
composed by three components that are the material dilation strain due to 0., the
contracting strain caused by confinement stress o.o, and the expansion strain due to sliding
of the wedge. The individual height shown in columns @ and @ of Table 6 agrees well as
they are all the corresponding height of the above global lateral strain €jat-gpi.

However, the reading of lateral strain gauges that are at the heights of column @ in Table 6
would not include the expansion strain due to sliding of the wedge as it are all attached out
of the wedge region. As a result, the global lateral strain within wedge region (contents in
columns @ and @ of Table 6) is always much higher than that for out of wedge region
(contents in columns and @ of Table 6). The mean ratio between them is 4.4 at peak
load point and 4.0 at end of tested point that has been shown in column and @ of
Table 6 respectively.

326



For example, load/lateral strain relationship of specimen GA-1A (Figure 17) are almost
identical on the rising branch for different layers of lateral strain gauges which suggests that
the wedge effect on the rising branch can be ignored for all intents and purposes. However
on the falling branch they vary considerably. The strain gauge at 150 mm height appears to
have captured the wedge and it is about 10 times of those at 50 mm height as shown in

column and @ of Table 6.

Therefore, the researchers have to capture the wedge to get the correct dilation for use in
calculate the right confinement stress which is the key parameter to improve the
compressive strength and ductility for confined specimens as discussed in Chapter 2 of this
thesis.
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6.6 Failure models of confined concrete

From Table 5, it can be seen that in 28 of the total of 38 test specimens single sliding plane
failure occurred; 6 specimens had circumferential wedge failure which were mainly in the
short specimens; and 4 had material failure or bending failure due to the slenderness in the
long specimens. It can be seen that the failure mode in material test specimens as in Figure
8 that is the circumferential wedge failure and from which most axial-stress/global-axial-
strain relationships are developed only occurs in a minority of cases and therefore not fully
representative of the behaviour in steel tube confined concrete.

Typically, the standard material test is always adopting small scale 2:1 aspect ratio
specimens, as a result the majority of the failure mode in material test specimens is the
circumferential wedge failure and from which most axial-stress/global-axial-strain
relationships are developed. However, similar to the specimens studied in this test program,
the aspect ratio of most practical steel tube confinement columns is more than 2, only
occurs in a minority of cases for the circumferential wedge failure. Therefore, the empirical
or semi-empirical equations developed from small scale concrete specimens are not truly
representative of the actual behaviour of full-scale columns which have aspect ratios
markedly different from the 2:1 ratio most commonly tested.

Detailed theoretical analysis for the effect of failure models on global lateral strain and
confinement stress can be found in Chapter 4 of this thesis.

6.7 Bond between concrete and steel tube

As the axial size effect expression, Equation 4 and lateral size effect expression, Equation 5
are both derived based on the assumption of ignoring the bond between concrete and
confinement material, it was not considered when we designed the test specimens.
However, it can be seen from Figure 55 that the mean value of each layer of axial strain
gauges for specimen GB-4B varies with height. Generally, the recording of the axial strain
gauges attached at middle height (e.g. Local axial strain-125 in Figure 55) is always bigger
than that of end positions (e.g. Local axial strain-50 in Figure 55). This phenomenon is very
obviously for specimens GB-4A and GB-4C as shown in Figures 45 and 64 respectively.

7. Summary

1. Tests with constant tube diameters and thicknesses but with varying lengths showed
that the global axial strain can be assumed to be size independent in the ascending
branch but size dependent in the descending branch. The tests clearly showed that as
the height of the specimens increased the axial-stress/global-axial-strain ductility
reduced rapidly and that the trend was similar to theoretical approaches. The tests also
showed that long specimens tended to buckling such that the axial-stress/global-axial-
strain relationships were no longer material properties but affected by the moment
induced by buckling.

2. In order to develop “equivalent” axial-stress/global-axial-strain relationships for
different sized confined concrete specimens, the lateral size effect expression, equation
5 has been proposed in Chapter 4 of this thesis and adopted to apply in this test
program. The larger and smaller confined concrete specimens consist of identical
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concrete and confining steel tube properties, and where thickness of steel tube only
varies as shown specimens 1 and 2 in Figure 1. Once the smaller specimen has been
tested and its axial-stress/global-axial-strain curve determined, the proposed size effect
expression can be applied to determine the thickness of steel tube required to provide
the larger specimen with a axial-stress/global-axial-strain curve similar to the smaller
specimen.

The proposed expression of sliding angle a that is dependent on the confinement stress
and proposed in Chapter 2 of this thesis has a very good correlation with the
experimental results.

The locally measured axial strain on the tube is significantly smaller than the global axial
strain in the concrete and, hence, should not be used to try to quantify the concrete
material properties.

In average, the global lateral strain within the wedge region is appropriate 4 times bigger
than those out of the wedge region. Hence, the researchers have to capture the wedge
to get the correct dilation for use in calculate the right confinement stress which is the
key parameter to improve the compressive strength and ductility for confined
specimens as discussed in Chapter 2 of this thesis.

Typically, the standard material test is always adopting small scale 2:1 aspect ratio
specimens, as a result the majority of the failure mode in material test specimens is the
circumferential wedge failure and from which most axial-stress/global-axial-strain
relationships are developed. However, similar to the specimens studied in this test
program, the aspect ratio of most practical steel tube confinement columns is more than
2, only occurs in a minority of cases for the circumferential wedge failure. Therefore, the
empirical or semi-empirical equations developed from small scale concrete specimens
are not truly representative of the actual behaviour of full-scale columns which have
aspect ratios markedly different from the 2:1 ratio most commonly tested. Detailed
theoretical analysis for the effect of failure models on global lateral strain, confinement
stress and behaviour of full-scale columns can be found in Chapter 4 of this thesis.
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Chapter 6: Concluding Remarks

This thesis details the extensive progress that has been made towards the shear-friction
properties and size effect for the shear failure of concrete specimens. The following
conclusions can be made:

1. Concrete under compression undergoes axial contractions and lateral expansions
both due to material straining and the shear friction mechanism of wedge sliding. Since the
shear friction properties which control wedge sliding are independent of size, for any size
specimen this non-material deformation due to sliding is constant, while the material
deformation scales with size. Hence it is this non material deformation which is responsible
for both axial and lateral strain size dependency.

2. By separating the size independent and size dependent components of the
deformation, it is possible to derive size dependent stress-strain relations for unconfined or
confined concrete from tests using one specimen size and to derive the dilatory
deformation directly from the axial deformation. This should considerably reduce the
amount of testing required for new concretes as only one size of specimen needs be tested
to obtain stress-strain relationships for all sizes.

3. The shear-friction material properties at all load levels can be derived from relatively
inexpensive actively confined concrete compression cylinder tests. This should expedite the
development of new types of concrete as large amounts of relatively expensive forms of
testing such as the use of shear-sliding tests are no longer required.

4. The derived shear-friction material properties can be used directly to quantify the
shear-sliding capacity and also can be used to analyse standard shear-sliding tests in order
to extract more accurate shear-sliding capacities.

5. The shear friction approach is capable of predicting the response of specimens
failing with either a circumferential wedge or a single sliding plane and hence can simulate,
through mechanics, the dependency of the passively confined stress strain response on
slenderness. Furthermore, the approach can be applied to specimens with any type of
concrete or any type of FRP wrap provided the shear friction properties are known.

6. The proposed axial and lateral size expressions should enhance the value or
usefulness of testing FRP confined cylinders as in theory the results from a single test can be
adapted to apply to a wide range of shapes and sizes.

7. The standard material test always adopts small scale 2:1 aspect ratio specimens, as a
result the majority of the failure modes in material test specimens is the circumferential
wedge failure and from which most axial-stress/global-axial-strain relationships are
developed. However, the aspect ratio of most practical steel tube confinement columns is
more than 2. Hence only in a minority of cases does the circumferential wedge failure occur.
Therefore, the empirical or semi-empirical equations developed from small scale concrete
specimens are not truly representative of the actual behaviour of full-scale columns which
have aspect ratios markedly different from the 2:1 ratio most commonly tested. Hence, it is
suggested that, as in practice, members have a slenderness ratio greater than two. There is
a need for empirical research to shift focus to experiments on slender specimens and in
which the total axial deformation is measured.
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Suggested Future Research

1. Though there has been much experimental research on quantifying the angle o of
the sliding plane, a strict and consistent measurement process is still required to ensure that
different researchers can reach an identical angle value for a given failure specimen.

2. The size and strength of aggregate is an important factor in shear-friction behaviour
that should be quantified.

3. No matter what kind of confinement material, the bond is always an important
factor to the shear-friction behaviour of confined concrete that should be quantified.

4. For steel tube confined concrete, the buckling of steel tube must be considered as it
leads to longitudinal stress distribution and also impact the confinement depending on the
direction of the buckling.
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