Molecular Characterisation of Shigella flexneri IcsA and the Role of Lipopolysaccharide O-Antigen in Actin-based Motility

Kerrie Leanne May B.Sc. (Honours)

Submitted for the degree of Doctor of Philosophy

Discipline of Microbiology and Immunology

The School of Molecular and Biomedical Science

The University of Adelaide

— February 2007 —

Abstract

Shigella spp. cause bacillary dysentery through invasion of the colonic epithelium. Shigella flexneri IcsA (VirG) is a polarly localised, outer membrane (OM) protein that is essential for virulence. IcsA activates the host actin regulatory protein, neural Wiskott-Aldrich syndrome protein (N-WASP), which in-turn recruits the Arp2/3 complex that polymerises host actin. The resultant F-actin comet tails initiate bacterial actin-based motility (ABM) and intercellular spread. The N-terminal surface-exposed region of IcsA, referred to as the passenger domain (aa 53-758), is responsible for IcsA activity in ABM. A glycine-rich region (aa 140-307) within this passenger domain is involved in mediating N-WASP binding.

This thesis sought to conduct a comprehensive study of IcsA structure-function. Linker-insertion mutagenesis was undertaken to randomly introduce in-frame insertions of 5 aa within the IcsA passenger domain. Forty-seven linker-insertion mutants (IcsA_i) mutants were isolated and expressed in *S. flexneri* ΔicsA. The resultant strains were characterised for IcsA protein production, cell surface-expression and localisation, as well as intercellular spreading, F-actin comet tail formation, and the recruitment of N-WASP. Linker-insertions between aa 595-716 of IcsA affected production and lie in a region homologous to the putative auto-chaperone domain of *Bordetella pertussis* BrkA. Two mutant proteins (IcsA_{i532} and IcsA_{i563}) exhibited disrupted polar targeting, enabling refinement of the polar targeting region to aa 532-563. Twenty-two of the *S. flexneri* strains expressing IcsA_i mutants were unable to spread from cell-to-cell; further characterisation revealed that nineteen strains were unable to form either F-actin comet tails or recruit N-WASP.

Since lipopolysaccharide O-antigen (LPS-Oag) on the bacterial surface has been shown to mask IcsA function, IcsA_i mutants were expressed in rough LPS (R-LPS) strains (that lack the Oag component) to investigate the effect of LPS-Oag on IcsA:N-WASP

interactions. Mutants were identified that were unable to recruit N-WASP and induce F-actin comet tails when expressed in smooth LPS (S-LPS) *S. flexneri* strains but able to recruit N-WASP and form F-actin comet tails in a R-LPS background. These studies enabled identification of two novel functional regions (aa 330-381 and aa 508-730) involved in N-WASP interaction.

For the first time, a structural model of the IcsA passenger domain was created using the Robetta protein prediction server and IcsA was predicted to form a β -helical structure. However, not all IcsA $_i$ mutant phenotypes could not be clearly correlated to the model.

As LPS-Oag had been shown to mask IcsA function, LPS profiles at the bacterial pole (where IcsA is predominantly located) were investigated. A comparison of the LPS profiles of purified minicells (derived from the bacterial cell pole) and purified whole cells, indicated that LPS populations are uniformly distributed on the polar and lateral regions of the bacterium.

IcsA is a member of the autotransporter (AT) family of proteins. Another AT protein, IgA protease of *Neisseria gonorrhoea* forms oligomeric structures in the OM. *In situ* chemical cross-linking revealed that IcsA is able to form high molecular weight complexes. Moreover, IcsA_i mutants were shown to exert a negative dominant effect on WT IcsA, providing evidence for IcsA:IcsA interactions in the OM.

In conclusion, studies conducted in this thesis revealed that multiple regions of IcsA interact with N-WASP, suggesting that IcsA has evolved to activate N-WASP in the presence of LPS-Oag and host actin regulatory proteins.

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution, and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Kerrie May

Acknowledgements

I would firstly and foremost like to thank my supervisor and mentor, Dr Renato Morona. I doubt that I will ever be able to convey my appreciation fully, for giving me such a nifty project, as well as for your continuous support, guidance and contagious enthusiasm. Thank you for the many thought-provoking discussions, not just about my own work but on all aspects of microbiology, biochemistry and cell biology. I've learnt more in the last 4 yrs than I ever thought possible. Through your tutelage I've gained the confidence and know-how to tackle whatever comes my way next.

I am deeply indebted to Luisa Van Den Bosch, for sharing with me her extensive knowledge and expertise on IcsA, *Shigella*, microscopy, tissue culture techniques and trouble-shooting experiments – this work would not have been possible without your guidance and support. To Dr Gerald Murray, my "go-to" guy in the lab, thank you for enduring my many questions, for your guidance with my work and career. Thank you to Dr Stephen Attridge for the fine example you set for me in the beginning; your attention to detail, integrity and commitment to your work are truly inspiring – I thank you for your support and encouragement over the last 5 years.

Thank you to Assoc Prof Hiroaki Miki for the kind gift of N-WASP anti-sera, and the HIS-tagged and GST-tagged N-WASP constructs. Thank you to Prof Michael Way for the N-WASP-GFP constructs, and Prof Chihiro Sasakawa for *virG* deletion constructs.

A BIG thank you to all the members of the Morona and Paton Laboratories, past and present, for your support, friendship, and for making it such a great place to work. You've all helped me out at some stage, either trouble-shooting experiments or helping to cheer me up when things haven't gone exactly to plan – cheers to Liz who was always there with a Twix when I needed it.

A special thank you must go to Leanne for proof-reading my thesis introduction. I really appreciate all the support you've given me, particularly in the last few months – you've been a fantastic friend. Cheers to Dr Uwe Stroeher, Dr Tony Foccareta, Dr Rebecca Pinyon, and Sally McCloud for the interest you've taken in my work over the years, for your helpful discussions, and advice. Thank you to Damien Chong for helping me with all things photoshop and image formatting; and to Alistair, Rikki and Kim for the many beers and laughs along the way. You've all been fabulous friends.

Thank you to my family and friends for being so supportive throughout my many years of study, and for helping me to keep things in perspective. In particular, my Mum who truly is an amazing person, whose belief in me and encouragement has meant so much to me.

And finally, but most importantly, to Marcin: firstly thank you for your extensive proof-reading of this thesis and for helping to bring out the best in me. If only you could help me now to find the words to thank you enough for everything you've done for me both personally & professionally. I thank you for making some of the most difficult years of my life also my happiest. I'm truly grateful to you for your motivation, encouragement and for loving me, even at my worst. Everything is so much more wonderful now that I have you to share it with. Dziękuję, kocham cie – Mwa!

Abbreviations

Abbreviations acceptable to the American Society from Microbiology are used without definition in this thesis. Additional and frequently used abbreviations are defined when first used in the text, and are listed below.

Å angstroms

A₆₀₀ absorbance at 600 nm

aa amino acid

ABM actin-based motility

Ap ampicillin

Ap^R ampicillin resistance

Arp actin-related protein

AT autotransporter

ATP adenosine triphosphate

bp base pairs

β-ME β-mercaptoethanol

cfu colony forming units

Cm chloramphenicol

DAPI 4',6-diamidino-2-phenylindole, dihydrochloride

DNA deoxyribonucleic acid

DMEM Dulbecco's modified Eagle medium

DMF dimethyl formamide

dNTP deoxynucleoside triphosphate

dsDNA double stranded deoxyribonucleic acid

DSP Dithio-bis(succinimidylpropionate)

F-actin filamentous actin

FCS foetal calf serum

g gravitational units

G-actin globular actin

GFP green fluorescent protein

GRR glycine rich repeat

h hour(s)

HMW high molecular weight

IcsA_i IcsA linker-insertion mutant

 $IcsA_{\Lambda}$ IcsA deletion mutant

IF immunofluorescence

IL interleukin

IM inner membrane

IPTG isopropyl-β-D-thiogalactopyranoside

Kb kilobases

kDa kilodaltons

Km kanamycin

Km^R kanamycin resistance gene or phenotype

L litre

LB Luria Bertani medium

LPS lipopolysaccharide

M molar

m metre

M cells membranous epithelial cells

min minutes

MOPS 3-(N-morpholino) propane sulfonic acid

mRNA messenger ribonucleic acid

NA nutrient agar

NEB New England Biolabs

nt nucleotide

N-WASP neural Wiskott-Aldrich syndrome protein

Oag O antigen (O polysaccharide)

OM outer membrane

OMPs outer membrane proteins

ON overnight

ORF open reading frame

PAGE polyacrylamide electrophoresis

PBS phosphate buffered saline

PCR polymerase chain reaction

PMN polymorphonuclear

R-LPS rough lipopolysaccharide

rpm revolutions per minute

RT room temperature

RUs (Oag) Repeat units

SAP shrimp alkaline phosphatase

sec second

SD standard deviation

SDS sodium dodecylsulphate

S-LPS smooth lipopolysaccharide

Sm streptomycin

ss signal sequence

S-type short Oag modal length

Tc tetracycline

Tc^R tetracycline resistance cassette or phenotype

TCA trichloroacetic acid

TTSS type III secretion system

VL-type VL Oag modal length

WASP Wiskott-Aldrich syndrome protein

WT Wild-type

X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactoside

 Δ Deletion mutation

Contents

Abstract	i
Declaration	iii
Acknowledgements	iv
Abbreviations	vi
Contents	ix
Chapter One: Introduction	1
1.1 Shigella	1
1.1.1 Classification and epidemiology	1
1.1.2 Pathogenesis	2
1.2 IcsA protein	4
1.2.1 Identification	4
1.2.2 Regulation of <i>icsA</i> expression and IcsA production	6
1.2.3 IcsA structure and function	7
1.2.3.1 IcsA polarity	9
1.2.3.2 Cleavage of IcsA by IcsP and other serine proteases	10
1.2.3.3 Phosphorylation of IcsA by protein kinase A	12
1.2.3.4 IcsB, Atg5 and autophagy	13
1.3 Autotransporter family and IcsA	14
1.3.1 Translocation across the inner-membrane	14
1.3.2 Periplasmic transit	16
1.3.3 Translocation across the outer-membrane	17
1.3.4 Structure of autotransporter proteins	19
1.4 Shigella Actin-based motility: the role of lcsA and the host actin	
cytoskeleton	20
1.4.1 Requirement of N-WASP for IcsA-mediated actin-based motility	21
1.4.2 N-WASP regulation and activation	22
1.4.3 IcsA-mediated activation of N-WASP	23
1.4.3.1 Role of Cdc42	25
1.4.3.2 Role of PIP2	25
1.4.3.3 Role of WIP	25
1.4.3.4 Role of N-WASP proline-rich region ligands Nck, Grb2, Profilin &	wish 26

1.4.3.5 Role of phosphorylation of N-WASP and Abl kinases	27
1.4.4 IcsA-mediated vinculin activation	27
1.6 Intercellular spread	29
1.6.1 Host cell factors involved in intercellular spread	29
1.6.2 Bacterial factors involved in intercellular spread	30
1.6.2.1 VacJ	30
1.6.2.2 Role of the Type III secretion system	31
1.7 The role lipopolysaccharide in ABM and intercellular spread	32
1.7.1 Structure of lipopolysaccharide	32
1.7.2 Role of LPS Oag in ABM and intercellular spread	32
1.7.3 Role of VirK in ABM	34
1.8 Project aims	35
Chapter Two: Materials and Methods	36
2.1 Chemicals and reagents	
2.1.1 Antibodies and antisera	
2.2 Bacterial strains and plasmids	
2.3 Bacterial growth media	
2.3.1 Liquid growth media	
2.3.2 Solid growth media	
2.3.3 Antibiotics and Congo Red solution	
2.4Maintenance of bacterial strains	38
2.4.1 General	38
2.4.1 Creation and maintenance of IcsA linker-insertion libraries	
2.5DNA isolation	
2.5.1. Isolation of chromosomal DNA	39
2.5.2Isolation of plasmid DNA from <i>E. coli</i> for <i>in vitro</i> cloning	39
2.5.3Isolation of plasmid DNA from <i>E. coli</i> for transfection experiments	
2.5.4 .Crude preparation of bacterial DNA by boiling method	40
2.6Analysis of DNA	
2.6.1 DNA quantitation	40
2.6.2 Restriction endonuclease digestion of DNA	
2.6.3 Agarose gel electrophoresis	41
2.6.4 Calculation of DNA fragment length	41
2.6.5 DNA sequencing	42

	2.6.5. Sequencing using dye-labelled oligonucleotides	42
	2.6.5.2 DNA sequence analysis	42
2.7	7 DNA amplification	42
	2.7.1 Synthesis of oligodeoxynucleotides	42
	2.7.2 Polymerase chain reaction (PCR)	43
2.8	8 DNA purification	43
	2.8.1 DNA gel extraction	43
	2.8.2 Purification of PCR products	44
2.9	9 Manipulation of DNA	44
	2.9.1 Oligonucleotide annealing	44
	2.9.2 Phosphorylation of oligos	44
	2.9.3 Shrimp alkaline phosphatase (SAP) treatment	45
	2.9.4 Ligation of DNA fragments into cloning vectors	45
2.′	10 Transformation procedures	45
	2.10.1 Preparation of chemically competent <i>E. coli</i>	45
	2.10.2 Transformation of chemically competent <i>E. coli</i> with plasmid DNA	46
	2.10.3 Preparation of electrocompetent S. flexneri and E. coli	46
	2.10.4 Electroporation of S. flexneri and E. coli	46
	2.10.5 Conjugation	47
2.	11 Construction of chromosomal mutations	47
	2.11.1 Allelic-exchange mutagenesis using pCACTUS	47
	2.11.2 Allelic-exchange mutagenesis using the λ Red phage mutagenesis system	48
	2.11.3 Transduction using P1 phage	49
	2.11.3.1 Preparation of P1 Phage stocks	49
	2.11.3.2 P1 Phage transduction	50
2.	12 Protein techniques	50
	2.12.1 Preparation of whole-cell lysates	50
	2.12.2 Trichloroacetic acid precipitation of culture supernatants	50
	2.12.3 Limited proteolysis with trypsin	51
	2.12.4 SDS-PAGE	51
	2.12.5 Coomassie blue staining	52
	2.12.6 Western transfer and detection	52
	2.12.7 Indirect immunofluorescence of whole bacteria	53
2.′	13 Minicell purification	53
	2.13.1 Crude preparation of minicells by differential centrifugation	53

2.13.2 Purification of minicells by sucrose gradients	54
2.13.2.1 Preparation of sucrose gradients	54
2.13.2.2 Purification of minicells	54
2.14 Lipopolysaccharide techniques	55
2.14.1 Preparation of LPS samples	55
2.14.2 Analysis of LPS by silver-stained SDS-PAGE	55
2.15 Chemical Cross-linking	56
2.15.1 Formaldehyde cross-linking	56
2.15.2 DSP cross-linking	57
2.16 Tissue Culture	57
2.16.1 Maintenance of cell lines	57
2.16.2 Plaque assays	57
2.16.3 Infection of tissue culture monolayers with S. flexneri and immunofluoresce	ence
microscopy	58
2.16.4 Transfection and infection of CV-1 cells	59
2.17 Microscopy	60
2.17.1 Mounting medium	60
2.17.2 Microscopy	60
2.18 Pull-down experiments with sheep brain extracts	61
2.18.1 Preparation of sheep brain extracts	61
2.18.2 Preparation of bacteria for pull-down experiments	61
2.18.3 Pull-down experiments	62
Chapter Three: Linker-insertion mutagenesis and general	
characterisation of IcsA _i mutants	63
3.1 Introduction	63
3.2 Linker-insertion mutagenesis	64
3.3 Dectection of mutated IcsA _i proteins by Western immunoblotting	
3.4 IcsA surface expression and localisation	
3.5 Intercellular spread	
3.6 Trypsin sensitivity of IcsA _i mutants	
3.7 Summary	70

Chapter Four: Intracellular behaviour of IcsA _i mutants	72
4.1 Introduction	72
4.2 F-actin comet tail formation by IcsA _i mutants	72
4.3 Investigation of the relationship between vinculin recruitment by IcsA	\ _i
mutants and defective intercellular spreading	74
4.3.1 Recruitment of endogenous vinculin by IcsA _i mutants inside HeLa cells	75
4.3.2 Binding of vinculin by IcsA _i mutants in in vitro pull-down assays with sheep	
brain extracts	75
4.4 N-WASP Recruitment by IcsA _i mutants inside HeLa cells	76
4.5 Effect of Oag on F-actin comet tail formation and the recruitment of h	ost
factors by S. flexneri expressing IcsA _i mutants	78
4.5.1 F-actin tail formation by S. flexneri $\Delta icsA$ $\Delta rmlD$ expressing IcsA _i mutants	78
4.5.2 N-WASP recruitment by S. flexneri $\Delta icsA \Delta rmlD$ expressing IcsA _i mutants	79
4.5.3 F-actin tail formation and N-WASP recruitment by S. flexneri $\Delta icsA \Delta rmlD$	
expressing IcsA $_{\Delta 103-320}$, IcsA $_{\Delta 319-507}$, IcsA $_{\Delta 508-730}$ and IcsA $_{\Delta 103-507}$	80
4.6 Summary	81
Chapter Five: In silico structural modelling of the IcsA passeng domain	
5.1 Introduction	83
5.2 Secondary structure analysis	
5.3 BetawrapPro analysis	
5.4 PHYRE structure prediction	85
5.5 Robetta structure prediction	86
5.6 Summary: IcsA structure-function	88
Chapter Six: Investigation of IcsA oligomerisation	89
6.1 Introduction	89
6.2 In situ cross-linking	89
6.3 Negative dominance of IcsA _i mutants	90
6.3.1 Effect on intercellular spread	91
6.3.2 Effect on F-actin comet tail formation	92
6.4 Effect of co-expression of epitope-tagged IcsAi87::FLAG with IcsA _{i563}	and
IcsA _{i677} mutants	92

6.4.1 Epitope tagging of IcsA _{i87}	93
6.4.2 Co-expression of IcsA _{i87::FLAG} with IcsA _{i563} and IcsA _{i677} mutants	93
6.4.3 Effect on Intercellular spread	94
6.4.4 Detection of IcsA _{i87::FLAG} co-expressed with IcsA _{i532} and IcsA _{i677} mutants b	y
Western immunoblotting	95
6.4.5 Detection of IcsA _{i87::FLAG} when co-expressed with IcsA _{i563} and IcsA _{i677} on t	he
surface of S. flexneri	95
6.5 Summary	96
Chapter Seven: Investigation of LPS distribution in <i>Escherich</i>	ia coli
bacteria	98
7.1 Introduction	98
7.2 Construction of a minicell mutant	
7.2.1 Construction of a suicide vector encoding a disrupted <i>minD</i> gene	
7.2.2 Allelic-exchange mutagenesis with pCACTUS-minD::KmR	101
7.2.3 Allelic-exchange mutagenesis with λ Red phage recombinase	102
7.3 Phase-contrast microscopy of <i>E. coli</i> minicell mutants	102
7.4 Construction of smooth LPS minicell-producing mutant of <i>E. coli</i> K	-12
expressing lcsA	102
7.5 Analysis of LPS of minicell-producing mutants of <i>E. coli</i> expressing	3
lcsA	104
7.6 Summary	105
Chapter Eight: Discussion	106
8.1 Overview: IcsA structure and function	106
8.2 Production of IcsA _i mutants and identification of an auto-chaperon	е
region (aa 595-716)	107
8.3 Refinement of the lcsA polar targeting region	
8.4 IcsA-mediated N- WASP activation and initiation of ABM	109
8.4.1 Effect of Oag on N-WASP:IcsA interaction	110
8.4.2 Role of the GRR region of IcsA in N-WASP interaction	111
8.4.3 Role of aa 330-381 of IcsA (within the IcsB binding region) in N-WASP	
interaction	112
8 4 4 Role of aa 508-730 of IcsA in N-WASP interaction	113

8.4.5 Multiple regions of IcsA (the GRR region, aa 330-381 and 508-730) are	required
to activate N-WASP via interactions with its WH1 and GBD/CRIB domai	ns115
8.4.6 Role of host accessory proteins	116
8.5 Intercellular spreading defect of IcsA _i mutants with proficient F-ac	ctin
comet tail formation and ABM	117
8.6 Oligomerisation of IcsA and AT proteins	117
8.6.1 IcsA oligomerisation and its role in IcsA biogenesis and function	118
8.6.2 Oligomerisation of other AT proteins	120
8.7 In silico analysis predicts a β -helical IcsA passenger domain	121
8.7.1 Predicted structural features of the IcsA	121
8.7.2 Interaction between the IcsA passenger domain and LPS-Oag	122
8.8 Conclusions	123
References	125

Corrigenda

Page 1, line 9 and elsewhere - "Shigellae" should be written "Shigellae".

Page 2, line 5 - "Genetic and DNA sequence analyses of Shigella spp. ..."

Page 3, line 3 - "During this process, the bacteria become localised within an endocytic vacuoles."

Figure legend 1.4, line 1 - "A schematic diagram of IcsA functional domains."

Page 10, line 10 - "...detected with anti-IcsA antisera throughout the length of F-actin tails formed by Shigella"

Page 14, line 17 - "...the most closely related to IcsA based on sequence identity (~29% and ~24%, respectively)."

Page 16, line 7 - "The status of ATs in the periplasm is not known."

Page 17, line 14 and elsewhere - "Oomen et al., 2002" should read "Oomen et al., 2004".

Page 34, line 23 - "...virK::Tn10 mutant had WT levels of icsA mRNA..."

Figure legend 3.5 and elsewhere - "Pannel" should be written "panel".

Figure legend 4.2 - "Alex594 and FITC-phalloidin images were false colour merged..."

Page 74, line 25 - "A S. flexneri rmlD strain is..."

Page 74, lines 16-18 – "One population of F-actin tails displayed WT morphology (Figure 4.2) whilst the other population appeared thicker, and more heavily labeled with FITC-phalloidin (refer to Figure 4.4)."

Page 78, line 13 - "...were transformed into S. flexneri ΔicsA ΔrmlD strain..."

Page 79, lines 12-14 – "Additionally, it was necessary to verify that IcsA_i proteins (identified in the previous section that were able to induce F-actin comet tail formation in a R-LPS background) were able to recruit N-WASP."

Page 80, line 12 - "...an altered proteolysis profile did not correlate with..."

Page 80, lines 21-22 - "...perhaps to an even greater extent..."

Figure 4.11, lines 9-10 - "...polar localisation region #2 (aa 507-620, orange); and a putative auto-chaperone region (aa 634-735, white)..."

Page 83, lines 18-21 - "In this chapter, various *in silico* analysis tools were employed to create a structural model for the IcsA passenger domain, and correlations were made between these structure predictions and data from linker-mutagenesis and function studies (Chapters Three and Four).

Page 86, lines 22-23 -"The first α-helix (aa 260-270) was predicted to lie within the GRR #5..."

Page 88, line 17 - "These loop regions could possibly..."

Page 97, line 4 - "IcsA_{i677} possesses a linker-insertion..."

Page 98, line 17 - "...may be explained by two hypotheses."

Page 98, line 20 - "...IcsA is still detected more readily at the poles..."

Figure legend 7.2, line 2 - "The chromosomal mutation of minD was confirmed..."

Page 104, line 13 - "7.5 Analysis of LPS of minicell-producing mutants..."

Page 122, line 18 - "Based on X-ray crystallography data..."

Page 123, lines17-18 - "As well as identifying novel N-WASP interacting regions, LPS-Oag has been shown..."