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RESEARCH ARTICLE
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An adaptive ant colony optimization framework for scheduling
environmental flow management alternatives under varied
environmental water availability conditions
J. M. Szemis1, H. R. Maier1, and G. C. Dandy1

1School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia

Abstract Human water use is increasing and, as such, water for the environment is limited and needs to
be managed efficiently. One method for achieving this is the scheduling of environmental flow manage-
ment alternatives (EFMAs) (e.g., releases, wetland regulators), with these schedules generally developed
over a number of years. However, the availability of environmental water changes annually as a result of
natural variability (e.g., drought, wet years). To incorporate this variation and schedule EFMAs in a opera-
tional setting, a previously formulated multiobjective optimization approach for EFMA schedule develop-
ment used for long-term planning has been modified and incorporated into an adaptive framework. As part
of this approach, optimal schedules are updated at regular intervals during the planning horizon based on
environmental water allocation forecasts, which are obtained using artificial neural networks. In addition,
the changes between current and updated schedules can be minimized to reduce any disruptions to long-
term planning. The utility of the approach is assessed by applying it to an 89km section of the River Murray
in South Australia. Results indicate that the approach is beneficial under a range of hydrological conditions
and an improved ecological response is obtained in a operational setting compared with previous long-
term approaches. Also, it successfully produces trade-offs between the number of disruptions to schedules
and the ecological response, with results suggesting that ecological response increases with minimal altera-
tions required to existing schedules. Overall, the results indicate that the information obtained using the
proposed approach potentially aides managers in the efficient management of environmental water.

1. Introduction

Environmental flow management aims to ensure that ecological flow requirements of flora and fauna,
which can be represented by the timing, duration, rate of change, and magnitude of flow [Poff et al., 1997],
are satisfied in regulated river systems [Junk et al., 1989; Poff et al., 1997]. However, due to the competing
water demands for the environment and for human purposes (e.g., water supply, industrial, agricultural, and
recreational), the water available for environmental purposes is generally insufficient to meet all ecological
flow requirements [Arthington et al., 2006; Poff and Zimmerman, 2010]. This conflict over water use is exacer-
bated by the rapid growth of the global population and by climate change [Arthington et al., 2006; Castelletti
et al., 2010]. Given that there is limited water available for environmental purposes, there is a need to make
best use of this water so as to achieve the best possible ecological outcomes.

This is not an easy task because the available environmental water: (i) has to be allocated not only within
the river channel but also to the surrounding wetlands and floodplains, which accommodate a range of
different species of flora and fauna; (ii) has to be scheduled at various times and released in various volumes
and for various durations in order to maintain and restore the ecological integrity of different species, which
generally have varying flow requirements [Rogers, 2011]; (iii) can be managed using a range of alternatives
at different spatial scales, such as at the individual wetland scale (e.g., wetland regulators/pumps) or at a
the landscape scale (e.g., flow releases and weir pool manipulation); and (iv) has to be managed over
multiple years, since there are species that require dry periods over multiple years, such as the Black Box
woodland (Eucalyptus largiflorens), or require the maintenance of a flood frequency of 1 in 2–5 years [Rogers,
2011], resulting in temporal dependencies between scheduling decisions.

In order to address this problem, optimization approaches have been used extensively to obtain optimal
monthly reservoir flow releases or operating rule parameters for reservoirs/weirs [e.g., Chang et al., 2010;
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Chaves et al., 2003; Higgins et al., 2011; Homa et al., 2005; Shiau and Wu, 2004, 2007, 2013; Suen and Eheart,
2006; Tilmant et al., 2010; Yang, 2011; Yin et al., 2011; Yin et al., 2010], or monthly schedules of optimal envi-
ronmental flow management alternatives (EFMAs), such as wetland gate operations and reservoir releases
[Szemis et al., 2012; Szemis et al., 2013]. However, all of the above approaches rely either on the historical
natural flow hydrograph or an assumed known volume of available environmental water. While optimized
schedules developed over extended time periods based on assumed water availabilities are useful for
longer-term planning purposes (as in Szemis et al. [2013]), they are not suitable for use in an operational set-
ting (e.g., determining optimal EFMA schedules under actual and predicted flow conditions), in which flows
available for environmental purposes are likely to change from year to year as a result of natural hydrologic
variability (e.g., droughts, floods). Consequently, there is a need to develop an optimal EFMA scheduling
approach that takes changes in actual environmental water availability into account, and can therefore be
used for operational purposes.

As has been demonstrated successfully in other areas of water resources management, such as irrigation
scheduling, this can be achieved by updating schedules as new information becomes available [Rao et al.,
1992]. Alternatively, the development of optimal schedules can be based on forecasts of future conditions,
rather than on historical or assumed future conditions, which can then be updated in an adaptive manner
at regular time intervals [e.g., Gowing and Ejieji, 2001]. However, such approaches have not yet been applied
to the optimal scheduling of EFMAs. Consequently, there is a need to develop an adaptive optimization
approach that can be used for operational purposes, in which optimal EFMA schedules are (i) developed
based on forecasts of available environmental water and (ii) updated at regular intervals throughout the
planning horizon in order to take account of updated knowledge of hydrological conditions. However, in
order to comply with practical requirements, any changes to existing EFMA schedules should be kept as
small as possible during the adaptation process so as to minimize the negative impacts on related opera-
tional strategies and resource scheduling (e.g., human resources and equipment). Consequently, there is a
need to develop a novel optimization formulation that enables an appropriate trade-off between ecological
outcomes and practical considerations to be considered.

In order to address the research needs outlined above, the objectives of this paper are to (i) develop a novel
adaptive approach to the optimal scheduling of EFMAs for rivers and their associated wetlands and flood-
plains that (a) is based on forecasts of available environmental water over the time period over which opti-
mal EFMA schedules are developed, (b) enables updated hydrological information to be incorporated at
regular intervals, and (c) is able to consider optimal trade-offs between the minimization of changes to exist-
ing optimal schedules and the maximization of ecological response; and (ii) to test the utility of the overall
approach and its features for a real case study of a section of the River Murray in South Australia under vari-
ous hydrological conditions over a 20 year period (1983–2003).

The remainder of this paper is organized as follows. The proposed adaptive optimization approach is intro-
duced in section 2, with details of how the approach was applied to the case study given in section 3. The
analyses performed to achieve the objectives are given in section 4, after which the results and discussion
are presented in section 5. Concluding remarks are then presented in section 6.

2. Adaptive Optimization Approach for the Optimal Scheduling of Environmental
Flow Management Alternatives

The main steps in the proposed framework are shown in Figure 1, which are based on the approaches intro-
duced by Szemis et al. [2012, 2013]. The primary differences between this approach and those presented in
Szemis et al. [2012, 2013] are:

1. Rather than assuming that the water that is available for environmental flow allocation purposes is known
and fixed over the required planning horizon, optimal EFMA schedules over the planning horizon are (i)
obtained initially based on forecasts of environmental water allocation over the planning horizon (i.e., at
time step ut 5 1) and (ii) updated at regular intervals (at time steps ut 5 2, 3, . . .ft), taking into account
updated forecasts of environmental water allocation, as highlighted by the grey boxes in Figure 1. The
forecast environmental water allocation is defined as Amax_ni(pd), where pd is the number of periods of
estimated environmental water allocations, ranging from 1 to np. This general approach is similar to that
adopted in other real-time water resources problems, such as in irrigation scheduling [Gowing and Ejieji,
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2001], multipurpose reservoir operation [Galelli et al., 2012], flood control [Niewiadomska-Szynkiewicz
et al., 1996] and the management of large water resource systems [Giuliani and Castelletti, 2013]. It should
be noted that the approach has elements in common with model-predictive control methods used in
other areas of water resources management [e.g., Bakker et al., 2013; Park et al., 2009; Prasad et al., 2013;
Xu et al., 2013], where a desired system state is assumed and the difference between actual and desired
system response is minimized. However, as part of the proposed approach the aim is not to control the
system to achieve a desired state, but rather to optimize system response.

2. In order to ensure that any changes to the EFMA schedules due to the updating process (i.e., from ut-1 to
ut) are minimized, while still maximizing ecological response, a novel multiobjective optimization formula-
tion is introduced. It should be noted that the specific changes that are minimized are case study depend-
ent (e.g., which of the resources affected by potential changes to an EFMA schedule are constrained,
what the dependencies between different operational strategies are) and need to be selected by the rele-
vant authorities (e.g., water manager or river operator).

As can be seen in Figure 1, the proposed approach begins with the formulation of the problem, which
includes identifying: (i) the wetlands, floodplains and river reaches that are to be managed; (ii) appropriate
ecological indicators (e.g., vegetation or fish species); (iii) the planning horizon over which the schedule for
the EFMAs is to be developed (e.g., 5 years), as well as the planning period (e.g., 20 years); (iv) the time

Figure 1. Steps in Proposed Adaptive Optimization Framework.
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interval, t, at which schedules are to be developed (e.g., monthly), which ranges from 1 to T intervals; and
(v) the EFMAs, Ma that are available for achieving the desired ecological response (e.g., flow release options,
regulator settings, pumping schedule), where a ranges from 1 to h. EFMAs, as well as the suboptions associ-
ated with each of these alternatives (e.g., magnitude, duration), are discussed in Szemis et al. [2012, 2013]. In
order to cater to the adaptive elements of the approach, additional variables that control the number of
updates within the planning horizon, ut ranging between 1 and ft, where ft is the maximum number of
updates and the update interval, xu, (i.e., annual, quarterly), are also defined.

Once the problem has been formulated, the objectives (i.e., maximize ecological response and minimize dif-
ferences between schedules) and constraints (e.g., environmental allocation constraints) need to be
defined. Next, the optimal scheduling process can commence. The first step of this process involves the
forecasting of the water allocation that will be available for environmental purposes over the planning hori-
zon with the aid of a forecasting model. The selection and development of an appropriate forecasting
model is dependent on the problem at hand, as well as the previous and current hydrological data that are
available within the case study area.

Next, a number of potential EFMA schedules are developed and their utility is assessed via the objective
functions and constraints. This is undertaken by linking a multiobjective ant colony optimization algorithm
(ACOA) with appropriate hydrological and ecological models. For a discussion on the justification of the use
of ACOAs in preference to other optimization approaches, such as dynamic programming (which would
require the reformulation of the EFMA scheduling problem) or genetic algorithms, the reader is referred to
Szemis et al. [2012]. The optimization process continues until certain stopping criteria, such as achieving the
maximum number of iterations have been met. The outcome of this process is an optimal EFMA schedule
over the selected planning horizon at time step ut 51, based on the forecasts of future environmental
water allocations at this time step.

At time step ut 5 2, the forecasts of the water allocation that will be available for environmental purposes
over the planning horizon are updated based on the latest available information and the process of obtain-
ing optimal EFMA schedules is repeated. In order to minimize the differences between the existing optimal
schedule and the new optimal schedule based on updated water availability estimates (Figure 1), the fol-
lowing objective, FD, should be used in addition to the objective of maximizing ecological response:

FD5
XncðfncÞ

mc5ncð1Þ

XK

v51

wD;v

Xtf ðvÞ

t5tiðvÞ
Dmc;t (1)

with

Dmc;t51 when Mmc;ut;t 6¼ Mmc;ut21;t

Dmc;t50 when Mmc;ut;t 5 Mmc;ut21;t

where the number of differences between the initial schedule at ut-1 and the new schedule at ut is
defined as Dmc,t for the mcth management alternative scheduled over K years and ti(v) to tf(v) time
intervals. The number of management alternatives (Ma) that will be compared, mc ranges from nc(1) to
nc(fnc), while wD,v, specifies the weight value that indicates the relative importance of minimizing the
difference between subsequent schedules for year v. The inclusion of wD,v, enables the minimization of
the differences between schedules at different stages of the planning horizon to be prioritized. For
example, it might be desirable to minimize differences at the earlier stages of the planning horizon, in
which case larger values of the weights corresponding to these time periods would be used. In contrast,
if no such preferences exist, the same value would be used for all weights. A value of 1 for Dmc,t is given
when the option selected for the mcth management alternative at time step ut and at time interval t is
not the same as the corresponding option for the EFMA schedule at ut21. In contrast, a value of 0 is
assigned to Dmc,t when the selected options are the same. For example, if a regulator is open as part of
the optimal schedule developed at ut-1, at the tth time step, and the regulator is closed at the tth time
step as part of the optimal schedule at ut, then the corresponding value of Dmc,t is 1. As can be seen from
equation (1), the values of Dmc are summed over the time intervals at which schedules are to be
developed, as well as the fnc user-defined management alternatives for which the minimization of differ-
ences between management options is considered important.
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The process of updating the forecasts of the available environmental water allocations and reoptimizing
the EFMA schedules in light of this information, while ensuring that any changes to updated schedules are
limited, is repeated for ut53, 4, . . .,ft.

3. Methodology

In this section, the utility of the approach introduced in section 2 is assessed by applying it to a section of
the River Murray in South Australia under various hydrological conditions. Details of the case study, which
were adapted from Szemis et al. [2013], are given in section 3.1, followed by details of how the proposed
adaptive optimal EFMA scheduling approach (Figure 1) is applied to the case study in sections 3.2–3.8.

3.1. Case Study
The case study area under investigation is a reach of the South Australian River Murray between Locks 1
and 2 (Figure 2). In this figure, the River flows from Lock 2 to Lock 1. The South Australian River Murray is
part of a larger river system (the Murray-Darling Basin (MDB)) that is located in south eastern Australia and
includes portions of four states, namely Victoria, Queensland, New South Wales and South Australia (see Fig-
ure 2) [Reid and Brooks, 2000]. Over the years, it has become highly regulated due to the construction of six
locks along the river channel, as well as a number of upstream structures, such as Hume Dam, located on
the border between Victoria and New South Wales [George et al., 2005]. As result of this regulation and the
overallocation of water, the flow variability within the river section in Figure 2 has reduced and caused
much of the biota in the river and adjacent wetlands and floodplains to be stressed or altered [Overton
et al., 2010]. In response, a basin-wide plan developed by the Murray Darling Basin Authority and approved
by the Government of Australia now recognizes the environment as a key stakeholder within the MDB.
However, how any environmental water allocations should be prioritized to maximize ecological response
is unclear, particularly given that the environmental allocation is not constant from 1 year to the next, but is
reduced during times of drought and increased during times of flooding [GSA, 2013].

The river reach under investigation spans 89.0 kilometers and currently accommodates two regulated wet-
lands and a large number of high lying floodplains along the river channel. As a result of the construction
of the locks, the wetlands closer to Lock 1 have become permanently inundated (i.e., continual connection
to the river) and experience no drying, whereas, wetlands closer to Lock 2 are temporary and rarely inun-
dated due to upstream system constraints [Overton et al., 2010]. Each wetland and surrounding floodplain
houses a variety of flora and fauna, ranging from high-lying black box woodland (Eucalyptus largiflorens) to
water birds and fish (e.g., ibis and carp gudgeon) [Turner, 2007].

In order to preserve and maintain the ecological integrity of the wetlands within this river section, it has
been suggested to not only release environmental water upstream at the South Australian border, but to
also operate gates at the wetland inlets, with two wetlands within the case study area currently falling into
this category [Schultz, 2007; Turner, 2007].

3.2. Problem Formulation
3.2.1. Specification of Ecological Assets and Indicators
The first step of the problem formulation stage involves identifying the ecological assets (i.e., wetlands,
floodplains, river) to be managed, Hi, where i ranges from 1 to q. In this case study, the management of two
wetlands, Morgan Lagoon and Brenda Park, is considered (i.e., q52) (Table 1). This includes the wetlands
themselves, the high-lying floodplain areas surrounding the wetlands, and the adjacent main river channel.
These wetlands have been selected because they are the only wetlands within the case study area that cur-
rently have operational regulators. The vegetation areas within the wetland and floodplain, as well as the
location of the fish and water bird species within the wetlands themselves, are identified with the aid of
existing wetland management plans [Schultz, 2007; Turner, 2007].

Next, the ecological response indicator, Ei,r, is identified, which is the Murray Flow Assessment Tool (MFAT)
developed by Young et al. [2003]. This was also used by Szemis et al. [2012, 2013]. This indicator quantifies the
ecological response of each species (including vegetation, waterbird and fish) within the river, and adjacent
wetlands and floodplains (Table 1). MFAT was developed specifically for the River Murray and can be used to
investigate the impact of different flow scenarios on the ecological response of flora and fauna in terms of two
ecological processes, that is, recruitment (e.g., promoting seed germination) and maintenance (e.g., preserving
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adult habitat) [Young et al., 2003]. In order to determine the ecological response using MFAT, response curves
are used, which are based on five flow components, that is frequency, duration, timing, rate of change and
magnitude. The response curves used for the case study area are those given in CRCFW [2003] and Overton
et al. [2010], and include species such as river red gum (Eucalyptus camaldulensis), wetland specialists (e.g., carp
gudgeons) and waterbirds (e.g., grebes). In addition, weights for the recruitment and maintenance processes
need to be selected and are chosen based on literature or expert knowledge. A total of 10 species are defined
for the case study area and the proportions of each species type per wetland are given in Table 2.

3.2.2. Identification of Planning Horizon, Time and Update Intervals
The planning horizon, Yv (v51, K years), time interval, t, where t ranges from 1 to the final interval, T and
the variables introduced as part of the proposed adaptive optimization approach, that is, the update

Figure 2. Map of case study area (adapted from Murray-Darling Basin Authority website, http://www.mdba.gov.au/river-data/spatial-data-
services/spatial-information).
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interval, xu, and the number of updates, ut, (which ranges from 1 to ft) need to be selected (see Table 1). In
this case, a planning horizon of 5 years is chosen, as wetland management plans in the study area are gen-
erally developed over 5 years [EA, 2007; Schultz, 2007], while a monthly time step is selected, since wetland
gate operations are set on a month by month basis [Schultz, 2007; Turner, 2007], with the total number of
time intervals, T, being 60. Finally, the update interval, xu, is set to 1 year given that environmental alloca-
tion within the case study area is specified on an annual basis [DEWNR, 2013], while the EFMA schedule will
be updated along a 20 year planning period (Yp) from 1983 to 2003, thus ft, equals 20.

3.2.3. Selection of Management Alternatives and Suboptions
This step of the problem formulation stage involves the determination of the management alternatives, Ma,
where a is between 1 and h, and the corresponding suboptions. The environmental flow releases at the
South Australia border are selected as the only reach scale management alternative, while the operations of
gates at the two wetlands (i.e., Morgan and Brenda Park, see Figure 2) constitute the chosen asset scale
management alternatives. As a result, there are three management alternatives (i.e., h 5 3) that can be con-
sidered in the development of the optimal EFMA schedules. The suboptions for the reach scale manage-
ment alternative include magnitude, Ma,m, and duration Ma,d suboptions, while only the duration suboption
is required for asset scale management alternatives (i.e., regulators open or closed), as shown in Table 1.
The selection of the maximum number of magnitude suboptions, n, is dependent on the case study area
and system constraints, where the number of potential duration suboptions at each time step equals p,
where p varies between 12 in July and 1 in June the following year.

Finally, the management alternatives for which changes between current (i.e., at ut-1) and updated (i.e., at
ut) schedules are to be limited, Mmc, need to be selected, where mc ranges from 1 to fn management alter-
natives. For the case study, fn is set to three (Table 1), since the differences are compared for all selected
management alternatives.

3.3. Specification of Objective Function and Constraints
Once the problem has been formulated, the objective functions and constraints are defined (see Figure 1).
As per the methodology introduced in section 2, the two objectives include the maximization of ecological
response and the minimization of changes to optimized EFMA schedules. Details of the formulation of these

Table 1. Details of Problem Formulation for Case Study

Problem Formulation Steps Specification

1 Managed ecological assets q 5 2
Hi, i51 to q (Morgan Lagoon and Brenda Park)

2 Ecological indicator
Ei,r r51 to s(i)

Murray Flow Assessment Tool (MFAT)
[Young et al., 2003]

Total number of species types 5 10
3 Planning horizon and period

Yv, v51 to K K5 5 years
Yp 51 to P P5 20 years
Time interval
t, t51 to T Monthly, T 5 60 months
Update interval, xu
Number of updates xu 5 1 (i.e., year), ft 5 20
ut, ut51 to ft

4 Management alternatives h 5 3
Ma, a51 to h (1 reach and 2 asset scale)

5 Management alternative suboptions
(i.e., magnitude, Ma,m, and/or duration, Ma,d)

Reach––magnitude and duration
Asset––duration

6 Number of management alternatives compared fn 5 3
mc, mc51 to fn.

Table 2. Species Composition in Case Study Area

Asset Wetland Name

Species Composition (% Per Asset)

Floodplain Flora Wetland Flora Waterbird Fish

1 Morgan Lagoon 50.0 11.0 25.0 14.0
2 Brenda Park 53.0 0.0 29.0 18.0

Water Resources Research 10.1002/2013WR015187

SZEMIS ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 7612



objectives for the case study are given below. As described in Szemis et al. [2013], the ecological response
can be composed of a number of different components, including different types of assets (e.g., wetland or
floodplain) and different ecological processes (e.g., recruitment or maintenance). As a result, the number of
assets, species and years considered need to be defined as sets, where the number of assets in set H ranges
from 1 to q, while the number of species per ith asset is identified as the Ri set, with each ith asset accom-
modating s(i) species. Finally, the total year set, V, ranging from 1 to a maximum year of YK is also defined,
with the sets shown below.

i 2 H5 1; 2; . . . ; qf g (2)

Ri5 1; 2; . . . ; sðiÞf g (3)

V5 1; 2; . . . ; YKf g (4)

The ecological components (e.g., fauna species or recruitment process) that are to be investigated as part of
the gth ecological response objective, where g ranges from 1 to fg, are then defined in the form of g sub-
sets, which also range from 1 to fg. In this study, the aim is to maximize the overall ecological response
within the case study area, which results in a single ecological objective (FE,1), where fg51. The correspond-
ing equation is as follows:

FE;15
X
i2H1

w1i

X
r2Ri;1

w2r

X
v2V1

w3v Ei;r;v

YK ;1
; g51 (5)

where Ei,v,r is the ecological indicator value for asset i, for indicator type r, in the vth yearly time interval. The
subset H1 contains the number of assets that enable the assessment of the river, wetland and floodplain
ecological response, which in this case is three (including two regulated wetlands and their surrounding
floodplains, as well as the river channel). On the other hand, Ri,1 contains information about which species
(e.g., waterbirds) are incorporated in the ecological response objective (FE,1). The number of species per ith
asset can be seen in Table 3. Finally, V1 specifies the number of years for which the ecological response
objective is calculated, which is five in this study (i.e., K55). Weights, w1i, w2r and, w3v place emphasis on
the ith wetlands, floodplains or river reaches, rth ecological indicator and YKth year, respectively. For this
case study, the values of the weights are set equal to one to give equal preference to each asset, species
and year.

The objective function used for the minimization of differences between EFMA schedules at subsequent
time steps is given in equation (1). Preliminary testing, which involved visually comparing the trade-off
curves developed for a range of weights, indicated that increasing the weighting for differences in the early
years produced the best trade-offs (i.e., a set of schedules that was nondominated). Thus, the weight values
used in this case study are, wD,1 equals 5, wD,2 equals 2, and wD,3 to wD,5 equal 1.

The constraints considered include the number of suboptions available for each management alternative
(i.e., equations (6) and (7)), and the annual environmental water allocation available (i.e., equation (8)). The
constraints on the number of magnitude and duration suboptions per management alternative, Ma, are as
follows:

Ma;m min � Ma;m < Ma;m max ; m 5 1 to n (6)

Ma;d min � Ma;d < Ma;d max ; d 5 1 to p (7)

where the magnitude suboptions (Ma,m) are constrained by minimum and maximum values of Ma,m_min and
Ma,m_max, respectively, and the duration suboptions (Ma,d) are constrained by minimum and maximum
values of Ma,d_min and Ma,d_max, respectively, for each management alternative. The specification of Ma,m_min,
Ma,m_max, Ma,d_min and Ma,d_max is user-defined, based on the requirements of the case study area under

consideration (e.g., Ma,m_max could be selected based on a
maximum achievable flow in the case study area). In this case, the
minimum magnitude option for the environmental flow releases at
the border, M1,m_min, is set to 0 GL/month, while the maximum
value, M1,m_max, is dependent on the forecasted annual environmen-
tal water allocation each year. If the asset scale management alter-
native (i.e., a52,3), Ma,m_min, equals 1, the gate is closed, whereas if
Ma,m_max equals 2, the gate is open. In addition, Ma,d_min is set to 1,

Table 3. Details of the Number of Species
Per Asset in the Total Ecological Response
Objective (g51) for All Investigations

Asset Set i � H
Number of Species

(s(i)) in Ri,1 (g51)

1 28
2 17
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while the maximum number of duration suboptions, Ma,d_max, is set to 12 to correspond to the number of
months in a given water year.

The second constraint considered is associated with the environmental water allocation, which can vary
over a set planning horizon (e.g., annually) due to the forecasts of environmental water made each year,
Amax_ni(pd) (see section 2). This information is then used to update the schedule at regular times in the plan-
ning horizon. The constraint is given as:

Xf niðpdÞ

t5i niðpdÞ
At � Amax niðpdÞ (8)

where, At is the environmental water allocation at the tth time step, pd is the number of periods of con-
strained environmental water allocations, ranging from 1 to np, while the number of increments in each
period, ni(p) ranges from 1 to Vp, and i_ni(pd) and f_ni(pd) are the corresponding initial and final time steps
for pd, over which a particular water allocation is released. The duration of each increment is defined as dni(p),

and the summation of all duration increments for each period must equal the total duration interval, Td. In
this case, the environmental water allocation varies annually making the number of periods, pd, five, whereas
the number of increments in each period equals 12, corresponding to the number of months in a year.

3.4. Forecasting of Future Environmental Water Allocation
In order to obtain forecasts of environmental water allocations over the planning horizon of 5 years, five
artificial neural networks (ANNs) are developed to obtain forecasts at t11, t12, t13, t14 and t15. ANNs
are used as they have been used successfully for water resources modeling in a variety of applications
[Abrahart et al., 2012; Maier et al., 2010; Wu et al., 2014]. The ANNs are developed using the procedure out-
lined in Wu et al. [2014], including input selection, data splitting, architecture selection, structure selection,
calibration and validation. In total, 106 years of reconstructed environmental water allocation and inflow
storage data from 1897 to 2003 are available for model development [see MDBA, 2012a].

Input selection is performed using a combination of system understanding and the partial mutual informa-
tion (PMI) algorithm, which accounts for both input significance and independence and has been applied
successfully in other water resources studies [Bowden et al., 2005; May et al., 2008a; 2008b]. The candidate
inputs considered before application of the PMI algorithm are shown in Table 4 and have been selected
based on the assumption that the past 5 years of inflows, storages and environmental allocation in the Mur-
ray Darling Basin can influence future environmental allocations. The final inputs selected are summarized
in Table 4, which indicate that future environmental flow allocations are a function of environmental flow
allocations, system storage and system inflows in current and previous years.

The available data are split into training (50%), testing (30%) and validation (20%) subsets using a modified
version of the DUPLEX algorithm [see May et al., 2008a]. This data splitting algorithm is used as it is
deterministic and suitable for data that are skewed and peaked and have low to medium variability [see
May et al., 2010; Wu et al., 2013], which is the case here (Table 5). Both input selection and data splitting
approaches are implemented using a Neural Network Excel Add-in (http://www.ecms.adelaide.edu.
au/civeng/research/water/software/).

Multilayer perceptrons (MLPs) are used for the model architecture, as they are the most commonly used
form of ANN in water resources and have been used successfully in many applications [Maier et al., 2010;
Wu et al., 2014]. A single hidden layer is used, as MLPs with a single hidden layer have been proven to be

Table 4. Details of Candidate Inputs and Selected Inputs for All Five ANNs

Candidate Inputs

Selected Inputs

Environmental
Allocation (t11)

Environmental
Allocation (t12)

Environmental
Allocation (t13)

Environmental
Allocation (t14)

Environmental
Allocation (t15)

Inflows t, t-1 t, t-1, t-2 t t-4 t-2, t-4
(t, t-1, t-2, t-3, t-4)
Storage t, t-3 t-2 t-1, t-2, t-3 t, t-2, t-4 t-1, t-3, t-4
(t, t-1, t-2, t-3, t-4)
Environmental allocations t t t-1, t-4 t, t-2, t-3 t-2, t-3
(t, t-1, t-2, t-3, t-4)

Water Resources Research 10.1002/2013WR015187

SZEMIS ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 7614

http://www.ecms.adelaide.edu.au/civeng/research/water/software/
http://www.ecms.adelaide.edu.au/civeng/research/water/software/


universal function approximators [Hornik et al.,
1989]. The number of hidden nodes is determined
by trial and error based on model performance on
the testing set, which has also been used effec-
tively in a large number of studies [Wu et al.,
2014]. The number of hidden nodes tried varied
from 1 to 7 and the optimal number of hidden
nodes for each ANN model is given in Table 6.

The back-propagation (BP) algorithm is employed for calibration, since it is the most frequently used
method for calibrating MLPs [Maier et al., 2010; Wu et al., 2014]. The optimal values of the parameters con-
trolling BP searching behavior (i.e., momentum and learning rate) are determined by trial and error based
on model performance on the testing set, with the parameter ranges tested and the optimal values given
in Table 6. It should be noted that each calibration run is repeated 10 times using a different random seeds.

To check the replicative validity of the ANN models, the residuals of the training data are examined, with
the standardized residuals for the ANN 1 model shown in Figure 3. The fact that the residuals are approxi-
mately white noise and the auto-correlation coefficient is 0.3 suggests that the selected model is able to
adequately capture the relationships contained in the data. In addition, almost all of the residuals are within
the 95% confidence intervals. Similar results are obtained for the remaining ANN models. Predictive validity
is checked with the aid of the validation set and a number of performance metrics, including Root Mean
Square Error (RMSE), Mean Average Error (MAE) and Mean Absolute Percentage Error (MAPE) [Bennett et al.,
2013; Dawson et al., 2007], with the resulting values shown in Table 7. As can be seen, all models performed
well, with MAPEs of the validation data varying between 7.3 and 9.6%.

3.5. Development of Environmental Flow Management Schedules
Once the problem is formulated and the environmental water allocations are forecast for each period for
the EFMA schedule at ut, trial EFMA schedules can be developed. As the decision variables chosen at one
time period, such as the duration of an environmental flow release, potentially have an impact on options
available at subsequent time steps, trial schedules are developed with the aid of a decision tree graph con-
sisting of the management alternatives and suboptions, which can be adjusted dynamically based on
selected options [Foong et al., 2008a; 2008b; Szemis et al., 2012; Szemis et al., 2013].

An example decision tree graph that considers environmental flow release, as well as magnitude and dura-
tion suboptions, is given in Figure 4. The example considers four magnitude options (i.e., 0, 100, 200, and
300 gigalitres (GL)) and three duration suboptions, and is constructed over three time steps. If the maximum
duration (i.e., 3 time intervals) is chosen at the first time step, the graph is adjusted dynamically so that no
other decision paths are made available at subsequent time steps (decision points), as shown by the bottom
path in Figure 4. On the other hand, if a duration option of one is chosen at the first time step (top path),
then the number of available options decreases from three to two, as there are only two more time steps
remaining. This results in a reduced search space, increasing the likelihood that optimal and near optimal
schedules can be found [Szemis et al., 2013]. A detailed discussion of this approach for the development of
EFMA schedules is given in Szemis et al. [2012, 2013].

3.6. Calculation of Objective Function and Assessment of Constraints
Once an EFMA schedule has been developed, its utility needs to be assessed, which is done via the objec-
tive function and constraints. In order to enable calculation of the objective function and constraint values,

Table 5. Statistical Properties of the Dataa

Variables Mean
Standard
Deviation Skewness Kurtosis

Inflows 18348.4 8183.7 1.54 3.69
Storage 11731.2 2803.5 20.75 0.33
Environmental

allocations
2229.0 288.6 21.73 4.96

aNumber of observations 5 106.

Table 6. Parameter Values Ranges Tested and Final Selected Parameters for Each ANN

Parameter
Parameter

Value Ranges

Selected Parameter Values

ANN 1 (t11) ANN 2 (t12) ANN 3 (t13) ANN 4 (t14) ANN 5 (t15)

Number of hidden
layer nodes

1–7 3 5 4 6 5

Learning rate 0.05–0.75 0.05 0.05 0.05 0.05 0.05
Momentum 0.020.90 0.0 0.1 0.1 0.0 0.1
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a hydrological model of the river system is
developed so that the ecological response of
the river system to changes in the flow regime
can be determined with the aid of MFAT.

The hydrological model is based on backwater
curves that relate flows at the South Australian
border to the corresponding river height
(T. Bjornsson, South Australian Department of
Water, personal communication, 2010) and is
used to develop relationships between the flow

at the South Australian border and river height at the Brenda Park and Morgan Lagoon wetlands. Fill values,
that is, the river height at which a particular wetland or floodplain is inundated, as well as area versus aver-
age depth curves for each specified vegetation area, are determined using ArcGIS and a range of data sour-
ces that include a Digital Elevation Model (DEM) obtained from the Department of Environment, Water and
Natural Resources baseline surveys [SKM, 2004; Smith and Fleer, 2006; Waanders, 2007] and wetland man-
agement plans [Schultz, 2007; Turner, 2007]. Once this is completed, the hydrological models for the wet-
lands and floodplains are developed using the water balance equations described in Szemis et al. [2013].

Average monthly evaporation data are obtained from the Australian Bureau of Meteorology website (http://
www.bom.gov.au/climate/data/). A value of 0.7 is chosen as the pan coefficient, as this is a commonly used
value in the Murray Darling Basin [Gippel, 2006]. To account for rainfall, average monthly rainfall data for the
case study area are used, which are also obtained from the Australian Bureau of Meteorology website
(http://www.bom.gov.au/climate/data/). It should be noted that both models are subject to a number of
assumptions, including (i) water seepage is negligible since it is small compared with evaporation loss, and
(ii) the rate of river level rise and fall occurs gradually over each month. The storage capacity of the wetlands
is very small compared with the magnitude of streamflow, and thus has a negligible effect on downstream
flow. Further details on the models are provided in Szemis et al. [2013].

3.7. Optimization and Updating of EFMA Schedule
The Pareto Ant Colony Optimisation Algorithm (PACOA) [Doerner et al., 2004] is used, as it has been used
successfully for this problem and achieved better result than alternative multiobjective ACO variants in Sze-
mis et al. [2013]. To account for multiple objectives, this algorithm uses multiple pheromone matrices and
updates the pheromone for each matrix based on the first and second best solution achieved for each
objective. The steps in the optimization procedure are given in Figure 5. The first step is the initialization of
the PACOA control parameters, after which the optimization process takes place. As part of this process, b
ants generate b trial EFMA schedules by selecting a management alternative and associated suboptions
(i.e., magnitude and/or duration) at each time step, as illustrated in the example in Figure 4. This is repeated
for a large number of iterations (its).

Once a complete trial EFMA schedule has
been developed by an ant, the utility of
this schedule is assessed using a fitness
function, which utilizes objective function
and constraint values. Fitness functions
are used to drive the optimization pro-
cess because ACO algorithms do not
explicitly consider the constraints apart
from upper and lower bounds on the
decision variables, making it necessary to
include penalties within the fitness func-
tion. A number of different fitness func-
tion formulations are investigated for the
case study, with the fitness function that
performs best and is hence used in this
study given below:
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Figure 3. Graph of training data standardized residuals for the ANN 1
model.

Table 7. Error Measures for All Forecasting ANN Models

Model Data Set MAE RMSE MAPE

ANN 1 (t11) Training 122.7 171.8 5.8%
Testing 139.7 198.7 6.7%
Validation 151.6 204.7 7.3%

ANN 2 (t12) Training 123.7 163.3 5.7%
Testing 176.7 228.5 8.5%
Validation 202.4 250.3 9.6%

ANN 3 (t13) Training 157.8 195.9 6.9%
Testing 183.0 221.4 8.8%
Validation 165.8 201.4 8.0%

ANN 4 (t14) Training 125.8 166.2 6.0%
Testing 177.0 226.2 7.9%
Validation 186.1 241.0 8.5%

ANN 5 (t15) Training 138.0 179.8 6.4%
Testing 222.9 291.8 10.6%
Validation 187.3 242.2 8.9%
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YE;15
1

YE;1
1Penaltya1 (9)

where FE,1 is the ecological response score calculated using MFAT (Equation 5) (which is inversed to ensure
that the score is maximized), and Penaltya1 is a penalty function that ensures the water allocation con-
straints for each period are adhered to, as given by:

Penaltya15

0 if
Xfni ðpdÞ

t5ini ðpdÞ

At � Amax
niðpdÞ

Xfni ðpdÞ

t5ini ðpdÞ

ðAtÞ2Amax niðpdÞ

8<
:

9=
;31; 00 if

Xfni ðpdÞ

t5ini ðpdÞ

At > Amax
niðpdÞ

1; 000 if FE;150:0

8>>>>>>>>>><
>>>>>>>>>>:

(10)

where the variables in equation (10) are defined in equation (5). In this case, there is only one period (i.e.,
pd51), where iin(pd)51 and fin(pd)560. It should be noted that the second objective, the minimization of dif-
ferences between subsequent schedules, does not need to be transformed into a fitness function and as a
result, equation (1) is used within the optimization process. After each iteration, the b trial schedules gener-
ated by the b ants undergo a nondominated sorting process in order to determine the schedules that are
on the Pareto front for that particular iteration and are subsequently stored in an offline storage matrix. As
mentioned earlier, the first and second best solution for each j objective (i.e., in equations (1) and (9)) are
used to update the j-pheromone matrices as part of the global update, using the following equation.

sj
t5ð12qÞ � sj

t1q � Dsj
t (11)

Dsj
t5

15 if suboption is in best and second best solution;

10 if suboption is in best and solution;

5 if suboption is in second best solution;

0 otherwise:

8>>>>><
>>>>>:

where the pheromone value for each tth suboption and jth objective (sj
t) is reduced by pheromone evapo-

ration, q, and increased by a pheromone value (Dsj), which is based on whether a given suboption is within
the best and/or second best solution. Pheromone evaporation is applied to suboptions of schedules that
perform poorly, which deters the algorithm from selecting these suboptions again. In this manner, the envi-
ronment is modified to guide the ants into regions of the search space that contain nondominated sched-
ules. The process of developing, assessing and updating the pheromone trails to guide the PACOA to near-
optimal trade-offs continues until the specified stopping criterion has been satisfied, which corresponds to
convergence of the hypervolume indicator [Fonseca et al., 2006] in this case. The reference point required
for the hypervolume calculations is determined as part of preliminary testing of the PACOA to lie outside
the range of the extreme points of the Pareto front.

Figure 4. Example of an EFMA schedule graph for environmental flow releases (in gigalitres (GL)) incorporating dynamic constraints.
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Before the PACOA is applied,
an extensive sensitivity analy-
sis is conducted such that
optimal values of the parame-
ters that control the searching
behavior of the algorithm are
identified and to maximize the
chances that the best possible
approximation to the optimal
trade-offs are developed. The
ranges of parameter values
tested and the final parame-
ters selected are given in
Table 8.

An update interval, xu, of 1
year is the selected (see
Table 1). Consequently, 20
updates of estimates of future
environmental water alloca-
tions and optimal EFMA
schedules are performed over
the 5 year planning horizon
over a 20 year period (1982–
2002).

4. Analyses Conducted

In order to assess the utility of
the proposed adaptive multi-
objective optimization
approach for the optimal
scheduling of EFMA alterna-
tives in an operational setting,
its performance in terms of
overall ecological response is
compared with that of a num-

ber of alternative approaches over a 20 year period from 1982 to 2002, as detailed below. In all tests
(Methods 1–4, Table 9), the number of magnitude options (n) is set to 37, while the maximum number
of durations equals 12. The details of each asset subset (Hg), the number of species subsets in each asset
(Ri,g), the number of years subset V (i.e., YK) and the allocation constraint period are given in Tables 1
and 3. It should be noted that minimum monthly flows within the river channel are set to South Austra-
lian entitlement flows [MDBA, 2012b], while weights for recruitment and maintenance within MFAT are
set to 0.5 each, with the exception of the weight for the wetland flora species, which is set to 0.25 for
recruitment and 0.75 for maintenance [CRCFW, 2003]. An equal preference is given to all species and
assets, and each optimization run is repeated 10 times with different starting positions in the solution
space.

4.1. Effectiveness of Using Optimal
EFMA Scheduling
In order to test the effectiveness of using
optimal EFMA scheduling as a means of
maximizing ecological response for a given
environmental water allocation, the per-
formance of the proposed approach is
compared with that of a benchmark

Figure 5. Pareto ant colony optimization algorithm procedure.

Table 8. Range of PACOA Parameters Investigated and Values Selected

PACOA Parameter Range of Values Tested
Selected

Value

Number of ants (ant) 20, 200, 300,500 500
Initial pheromone (so) 0.5, 1.0, 10.0 0.5
Evaporation rate (q) 0.5, 0.1, 0.15, 0.2, 0.5 0.1
Evaluations 90,000 90,000
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approach that does not include any man-
agement of environmental water alloca-
tions (i.e., using the actual flows with no
wetland regulators). It should be noted
that as part of the proposed approach
(Method 2, Table 9), the ANN models are
used to obtain forecasts of environmental
water availability over the next 5 years,
optimal EFMA schedules are obtained over

a 5 year period and these schedules are updated annually by reoptimizing using the multiobjective ACO
approach that trades-off maximizing ecological response with minimizing changes to existing schedules. It
should also be noted that optimal updated schedules selected from the Pareto fronts correspond to an
inflection point on the trade-off curve (i.e., an EFMA schedule that determines a good balance between
minimization of differences between subsequent schedules and maximizing the MFAT score).

4.2. Effectiveness of Adaptive Optimization Approach
In order to test the effectiveness of the proposed adaptive optimization approach (Method 2, Table 9) in
improving ecological response, its performance is compared with that of the approach used in Szemis et al.
[2013] (Method 1, Table 9), in which a known, constant environmental flow allocation of 570 GL/yr is
assumed each year and hence the updating of optimal schedules is not required.

4.3. Effectiveness of Minimization of Differences Between Successive Schedules
In order to test the effectiveness of the proposed multiobjective formulation in being able minimize
changes to existing schedules while maximizing ecological response, the performance of the proposed
approach (Method 2, Table 9) is compared with that of an approach that only maximizes ecological
response, without consideration of minimizing changes to subsequent schedules (Method 3, Table 9). It
should be noted that the solutions for Method 3 are extracted from the same Pareto front as the solutions
for Method 2, but correspond to the solutions that result in the highest MFAT score.

4.4. Effectiveness of ANN Forecasting Model
In order to test the effectiveness of the ANN models in producing forecasts of environmental water avail-
ability that maximize ecological response, the performance of Method 3 (Table 9), which utilizes the ANN
forecasts but only maximizes ecological response, is compared with that of an approach that is identical,
apart from using perfect knowledge of future environmental water allocations, instead of those produced
by the ANN models (Method 4, Table 9).

5. Results and Discussion

5.1. Effectiveness of Using Optimal EFMA Scheduling
As can be seen from Figure 6 by comparing the MFAT scores obtained using the benchmark (Actual) and
the proposed (Method 2) approaches, there is significant benefit in optimal EFMA scheduling, as indicated
by the substantial increases in ecological response. This indicates that it is worthwhile to operate regulators
at the Morgan Lagoon and Brenda Park wetlands, particularly at times when there are lower flows, as is the
case for the water years of 1994–1995, 1997–1998, and 2002–2003 (see Figure 7).

5.2. Effectiveness of Adaptive Optimization Approach
When the proposed approach (i.e., Method 2) is used, annual MFAT scores are generally higher than those
obtained using known, constant environmental water allocations (Method 1), as shown in Figure 6. This is
particularly evident at higher flows (see years 1990–1991, 1992–1993, 1995–1996, and 1996–1997 in Figure
7), where the ANN models are able to forecast above average environmental water allocations, enabling
releases and regulator operations to be altered. In contrast, when an average environmental allocation is
assumed and higher flows are actually released, the EFMA schedule developed is suboptimal, producing
lower ecological response.

In order to better understand the reasons for the differences in MFAT scores, it is worthwhile to compare
the MFAT scores for different wetlands, species and ecological processes (Figure 8), as these are aggregated

Table 9. Details of Methods Used

Method

Method for Obtaining
Environmental

Water Allocations

Annual Updating
of Optimal
Schedules

Minimization of
Changes to
Schedules

1 Fixed (570 GL/yr) No No
2 ANN models Yes Yes
3 ANN models Yes No
4 Actual Yes No
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to produce the annual scores presented in Figure 6. As can be seen in Figure 8a, there are generally only
small differences in MFAT scores for Morgan Lagoon. However, the differences are more pronounced in
water years 1990–1991 and 1996–1997, which is due primarily to the increased maintenance ecological
response that could be achieved for river red gums by using the adaptive scheduling approach (Method
2––Figure 8c). This is because when Method 1 is used, it is assumed that an average environmental alloca-
tion is available, which is not enough to overtop the regulator and inundate the higher lying vegetation,
such as river red gums. Because of this, in 1990–1991, the regulator is opened for 8 months (i.e., July to Jan-
uary) to promote a response for lower lying vegetation. However, when higher environmental allocations
are released, as is the case in 1990–1991, the Morgan Lagoon regulator is opened when it would normally
be closed in order to obtain an ideal dry period. In comparison, Method 2, taking into consideration pre-
dicted higher environmental allocation, was able to adjust the schedule to open the gate in December,
thereby achieving the required dry period.

While the MFAT scores obtained using Methods 1 and 2 are different for Morgan Lagoon (Figure 8a), this is
not the case for Brenda Park (Figure 8b), suggesting that there is much more benefit in using the proposed
adaptive scheduling approach for the former wetland. The only differences in the MFAT scores for Brenda
Park (i.e., 1995–1996 and 1996–1997) when using the deterministic and adaptive approaches are primarily
due to the maintenance MFAT scores achieved for the floodplain flora, as shown in Figure 8d. The largest
difference occurs in 1996–1997, where a score of 0.17 is obtained when Method 1 is used, whereas a score
of 0.39 is obtained when Method 2 is used. This increase in MFAT score for Brenda Park when Method 2 is
used is due to the ability of this method to update the optimal EFMA schedule at the beginning of 1996–
1997 using improved environmental water allocation estimates. In order to achieve a maintenance response
for floodplain flora, the flora must undergo a dry phase. However, prior to 1996–1997, for the EFMA sched-
ule developed using Method 1, the gate is closed and the wetland is allowed to dry. However, closing the
gate for greater than 15 months has a negative impact on the floodplain flora. In contrast, in Method 2, the
gate is closed from July to August, thereby providing sufficient time for the ideal dry period for the flood-
plain flora and achieve an overall maintenance score of 0.39.
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Figure 6. Average annual MFAT scores achieved for each method and actual data between the years 1983–2003.

Figure 7. Actual flows at the South Australian Border.
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The average MFAT score for the wetland and floodplain species within the case study area obtained using
Methods 1 and 2 are shown in Figure 9. In the first 4 years, both methods achieve similar results, with wet-
land flora scores higher than those for floodplain flora. However, in the water year of 1987–1988, a higher
wetland score is achieved for Method 1 than Method 2 because a higher environmental allocation is pre-
dicted using the latter method, and as such the EFMA schedule is adapted to suit higher lying vegetation.
In reality, average flows were released and consequently, Method 1 achieves better results than Method 2.

Figure 8. Average annual MFAT scores achieved for Methods 1 and 2 for the years 1983–2003.
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In 1991–1992, the floodplain flora scores for both Methods outperform the wetland flora scores, due to
higher flow within the South Australian River Murray. This suggests that irrespective of the method used,
when high flows are available, the floodplain flora will benefit more than the wetland flora, given that the
latter will not experience ideal ecological conditions since it is flooded for a longer period. Finally, in 1995–
1996 and 1998–1999, it can be seen that for Method 1, the wetland score achieved is higher than that
achieved for Method 2. However, this is the reverse for the floodplain score. This is because in Method 1,
lower allocations are assumed, and as such, the EFMA schedule developed favors wetland flora, whereas
higher allocations forecast in Method 2 place more emphasis on the floodplain flora. As a result, when low
flows are released, as is the case in 1995–1996 and 1998–1999, the predicted environmental allocations
have an impact on which species should be favored. This suggests that at times of low flows, such as
drought, managers should be aware of the impact the volume of environmental allocation has on these
species, and as such should favor the species in need of improvement of ecological health.

5.3. Effectiveness of Minimization of Differences Between Successive Schedules
In general, the performances of Methods 2 (trade-off between maximizing ecological response and mini-
mizing disruptions to optimal schedules) and 3 (best possible ecological response) are very similar (Figure
6). In order to obtain a better understanding of the trade-offs between maximizing ecological response and
minimizing changes to optimized EFMA schedules, the trade-off curves for the water years 1983–1984,
1992–1993, and 2002–2003 are shown in Figure 10. As can be seen, in all 3 years, substantial reductions in
the number of changes to the optimal schedules can be achieved with very small reductions in MFAT score.
These results indicate that the proposed multiobjective formulation is successful in reducing disruptions to
existing schedules with minimal impact on ecological response, which is important from a practical man-
agement perspective. However, the exact nature of the changes from one schedule to the next would have

to be examined by the appro-
priate authorities in order to
determine the significance of
the changes.

5.4. Effectiveness of ANN
Forecasting Model
As can be seen from Figure 6,
the MFAT scores obtained
using Methods 3 (using fore-
casts of future environmental
water allocations using the
ANN models) and 4 (using
actual future environmental
water allocations) are very simi-
lar. This suggests that the ANN
models are performing well, as
their use enables MFAT scores
to be obtained that are close

Figure 9. Average annual MFAT scores for floodplain and wetland flora achieved for Methods 1 and 2 between the years 1983–2003.

Figure 10. Trade-off curves developed using Method 2 for the 1st year (1983–1984), 10th
year (1992–1993), and 20th year (2002–2003).
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to the maximum scores that could be obtained with the aid of perfect knowledge of environmental water
allocations over the next 5 years.

6. Conclusions and Recommendations

Overall, the results suggest that the use of optimal EFMA scheduling can result in substantial increases in
ecological response and that the proposed adaptive scheduling approach is able to improve ecological
response further in an operational setting, compared with approaches used previously. This is achieved by
forecasting environmental water allocations over the next 5 years with the aid of artificial neural network
models and updating schedules on an annual basis. From a practical perspective, the proposed multiobjec-
tive optimization formulation is able to reduce the number of changes to existing optimized schedules dur-
ing the updating process at a very small reduction in ecological response.

Even though the results demonstrate the utility of the proposed adaptive optimization approach, improve-
ments could be made by considering uncertainties, such as those associated with the estimation of ecologi-
cal response and the forecasting of future environmental flow availability. For example, the Murray Flow
Assessment Tool (MFAT) uses response curves that are based on imperfect knowledge [Baihua and Merritt,
2012], thus introducing uncertainties in the objective function. In order to address this issue, comprehensive
sensitivity analysis could be used to assess the impact of the uncertainties of MFAT, as suggested by Norton
and Andrews [2006] and Baihua and Merritt [2012]. There is also uncertainty in the ANN forecasting models,
which could be taken into account by considering more sophisticated ANN model development
approaches [e.g., Kingston et al., 2005; Kingston et al., 2008; Zhang et al., 2011] or by updating the ANN fore-
casting models as new data become available to extend their range of applicability [Bowden et al., 2012]. In
addition, it is difficult to physically interpret the inputs selected for the forecasting model, however, as more
data become available, a critical examination of the selected inputs might provide fruitful in order to
increase system understanding. Finally, an investigation on the update interval would also be beneficial, as
the interval step may affect the optimal EFMA schedule development, as well as provide a means to
account for system failures (e.g., broken wetland regulators).

Overall, the results demonstrate the utility and benefit of the proposed adaptive optimal EFMA scheduling
approach in an operational setting. The approach has the potential to aid wetland managers in making
informed decisions on how to best schedule EFMAs in an operational setting at times when environmental
water allocations are likely to vary from year to year and when there is a limited amount of water available
for the environment, which needs to be efficiently used to achieve the best possible ecological outcomes.
In addition, the ability to assess the number of differences between schedules and understand the resulting
impact on the ecological health of the system is likely to minimize any disruptions to the long term plan-
ning of EFMAs, as well reduce the resources required to make these changes.
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