SUBMITTED VERSION

Alvarez G, Casiro S, Gutnisky C, Dalvit GC, Sutton-McDowall ML, Thompson JG, Cetica PD. Implications of Glycolytic and Pentose Phosphate Pathways on the oxidative status and active mitochondria of the porcine oocyte during in vitro maturation Theriogenology Online Publ:1-35 2015

Copyright © 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.theriogenology.2015.11.008

PERMISSIONS

http://www.elsevier.com/about/company-information/policies/sharing#preprint

<u>Preprint</u>

- Authors can share their preprint anywhere at any time.
- If accepted for publication, we encourage authors to link from the preprint to their formal publication via its Digital Object Identifier (DOI). Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.
- Authors can update their preprints on arXiv or RePEc with their accepted manuscript .

Please note:

- <u>Cell Press</u>, <u>The Lancet</u>, and some society-owned titles have different preprint policies. Information on these is available on the journal homepage.
- Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles.

5 January, 2016

IMPLICATIONS OFGLYCOLYTIC AND PENTOSE PHOSPHATE PATHWAYS ON THE OXIDATIVE STATUS AND MITOCHONDRIAL ACTIVITY OF THE PORCINE OOCYTE DURING IN VITRO MATURATION

Gabriel Martín Alvarez¹, Sebastián Casiró¹, Cynthia Gutnisky¹, Gabriel Carlos Dalvit¹,
Melanie L. Sutton-McDowall², Jeremy G. Thompson², Pablo Daniel Cetica¹

6

7	¹ Area of Biochemistry, -INITRA (Institute of Research and Technology on Animal		
8	Reproduction), -Executing Unit INPA (Research in Animal Production) UBA-CONICET,		
9	School of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina.		
10	² Robinson Research Institute, School of Paediatrics and Reproductive Health, The		
11	University of Adelaide, Medical School; Australian Research Council Center of Excellence		
12	for Nanoscale_BioPhotonics ₁ ; Institute for Photonics and Advanced Sensing, The		
13	University of Adelaide, Adelaide, South Australia, Australia.		
14			
15	Running title: carbohydrates and oxidative metabolism in porcine IVM		
16			
17	Corresponding_author: Gabriel Martín Alvarez, galvarez@fvet.uba.ar		
18	Chorroarín 280, C1427CWO, Buenos Aires, Argentina. Tel/Fax: + 54 11 4524 8452.		

19

22 Abstract

23

24	The <u>gG</u> lycolysis and <u>the pentose phosphate pathway (PPP)</u> were modulated in porcine		
25	cumulus-oocyte complexes (COCs) during in vitro maturation (IVM) by the addition of		
26	inhibitors and stimulators of key enzymes of the pathways , with the aim of to analizing		
27	analyze their participation influence on the oxidative status, mitochondrial activity and		
28	maturation of the oocyte. The influence of Glycolysis and PPP in COCs were evaluated by		
29	lactate production-glucose uptake and by the Brilliant Cresyl Blue test, respectively.		
30	Oocyte oxidative and mitochondrial activities were evaluated by Redox Sensor Red CC 1		
31	and Mito Tracker Green FM, respectively. pharmacological and physiological inhibitors of		
32	glycolysis (NaF and ATP) and PPP (6-AN and NADPH) we validating by assessing		
33	glucose and lactate turnover and brilliant cresyl blue staining in oocytes. Modulators of		
34	glycolysis and PPP activity significantly perturbed nuclear maturation, oxidative		
35	metabolism (Redox Sensor Red CC-1) and mitochondrial mass (Mitotracker Green FM)		
36	within oocytes ($P < 0.05$). In comparison, Oocyte nuclear maturation rate and oxidative and		
37	mitochondrial activities decreased in the presence of the pharmacological (NaF) or the		
38	physiological (ATP) inhibitors of glycolysis (P<0.05). The pharmacological (6-AN) and the		
39	physiological (NADPH) inhibitors of PPP induced a decrease in the oocyte nuclear		
40	maturation rate and oxidative and mitochondrial activities (P<0.05). The physiological		
41	stimulators of glycolysis (AMP) and PPP (NADP) eaused nodid not effect on-any of		
42	evaluated parameter. In the absence of modulators, We found fluctuations in the oocyte		
43	oxidative <u>activity</u> and mitochondrial activities mass were observed during porcine IVM.		

Comment [MM1]: Mitotracker Green measures mitochondria mass (number), independent of membrane potential (MMP), so it actually doesn't indicate activity. Rosamine based mitotracker dyes (i.e. Mitotracker Red CMX Ros) do measure MMP.

Comment [MM2]: Is this right???

44	The inhibition of glycolysis and PPP modified the pattern of oxidation and mitochondrial		
45	fluctuation, and this conditionresulting in impaired meiotic progression. We demonstrated		
46	the relationship between carbohydrate metabolism in COC and oocyte redox status		
47	necessary for porcine oocyte IVM.		
48	Glucose/lactate results? BCB?		
49			
50	Key words: glycolysis, pentose phosphate pathway, oxidative status, mitochondria, oocyte,		
51	pig.		
52			
53	Introduction		
54			
55	In the porcine species pic, the addition of glucose to the maturation medium		
56	accelerates the meiotic progression of oocytes [1] and increases the percentage of oocytes		
57	that complete nuclear maturation, reaching the metaphase II (MII) nuclear stage [2,3].		
58	Additionally, glucose metabolism is important for oocyte cytoplasmic maturation, which in		
59	turn is necessary for embryo development [4].		
60	The short being strong has been appresed as is any of the main fates for the shortest		
60	The glycolytic pathway has been proposed as is one of the main fates for the glucose		
61	consumed by murine, bovine and porcine cumulus-oocyte complexes (COCs)_[4-8].		
62	Evidence suggests that cCumulus cells metabolize glucose, producing glycolytic		
63	metabolites, mainly pyruvate and/or lactate, which are can be incorporated and further		

64 metabolized by the oocyte during maturation [8-10]. In somatic cells, the major regulatory

point of the glycolytic pathway is the enzyme phosphofructokinase 1 (EC 2.7.1.11), with 65 AMP and ATP having important positive and negative allosteric regulating roles, 66 respectively [11,12]. Sodium fluoride (NaF) is also a well-known inhibitor of the pathway, 67 68 inactivating the glycolytic enzyme enolase (EC 4.2.1.11; [13]). The intermediary 69 metabolism of glucose also produces the reducing equivalent NADH. Within cumulus cells, 70 This NADH is produced metabolite is mainly synthesized by cumulus cells in the glycolytic pathway by glyceraldehyde 3-phosphate dehydrogenase (glycolysis) and by the 71 oocyte via the reaction catalyzed by α -ketoglutarate dehydrogenase and malate 72 dehydrogenase. In addition to being used as a cofactor for anabolic pathways, NADH is a 73 key redox molecule and is important in both cytosolic and mitochondrial redox 74 75 regulation[14]. The redox state describes a complex relationship between oxidised and 76 reduced forms of a large number of molecules, including NAD(P):NAD(P)H, FAD:FADH₂ and, reduced glutathione: glutathione disulfide (for reviews, see[15,16]). 77

Alternatively, Glucose glucose can be alternatively oxidized through via the pentose 78 phosphate pathway (PPP), which appears to be linked to the regulation of oocyte nuclear 79 80 maturation [3,5]. In somatic cells, the major regulatory point of the PPP is atglucose 6-81 phosphate dehydrogenase (G6PDH; E.C. 1.1.1.49), with the NADP:NADPH ratio having an important regulatory role [17]. It was also proposed that Furthermore, -G6PDH is 82 competitively inhibited by NADPH [18]. 6-Aminonicotinamide (6-AN) is a 83 pharmacological inhibitor of the PPP that suppresses the two NADP-requiring enzymes of 84 the pathway, namely G6PDH and 6-phosphogluconate dehydrogenase [19]. 6-AN can 85 86 replace then nicotinamide moiety of pyridine nucleotides, with the resulting_metabolite 87 inhibiting the pyridine nucleotide-linked reactions in a competitive manner [19,20].

The PPP has several metabolic goals: (1) to produce NADPH for reductive 88 synthesis, (2) to yield ribose-5-phosphate as a nucleotide precursor and (3) to prevent 89 oxidative stress throughout the glutathione and thioredoxin systems, and thus regulating the 90 redox intracellular state[21]. Other sources of NADPH are the reactions catalysed by the 91 NADP-dependent isocitrate dehydrogenase (NADP-IDH) and malic enzyme, 92 93 howeverHowever, it has been demonstrated that in G6PDH-deficient cell lines the activity of these enzymes is not enough-sufficient to replace the PPP production of derived NADPH 94 [22]. Conversely, in mouse oocytes, the main source of NADPH seems to be the NADP-95 IDH[14]. 96

We hypothesize that COC carbohydrate metabolism is one of the main contributing
factors for oocyte oxidative status and directly influences mitochondrial activity required
for the maturation of the oocyte. The aim of the present study was to investigate the effect
of inhibitors and stimulators of glycolysis and PPP during porcine oocyte in vitro
maturation on the oxidative status, mitochondrial activity and maturation of the oocyte.

102

103 Materials and Methods

104

105 *Materials*

106

107 Unless otherwise specified, all chemicals used were obtained from Sigma Chemical108 Company (St. Louis, MO, USA).

Comment [MM3]: Throughout you need to add replicate and sample numbers at the end of each of the experiments.

110 Recovery of COCs

111

112 Ovaries from slaughtered gilts were transported in a warm environment (28-33°C) 113 for the 2-3 h journey to the laboratory. Ovaries were washed in 0.9% (w/v) NaCl containing 114 100 000 IU/L penicillin and 100 mg/L streptomycin. COCs were aspirated from 3-8 mm 115 antral follicles by using a 10 mL syringe and an 18-gauge needle, and oocytes surrounded 116 by a dense cumulus were selected.

117

119

120 COCs were cultured in medium 199 (Earle's salts, L-glutamine, 2.2 mg/L sodium
121 bicarbonate; GIBCO, Grand Island, NY, USA) supplemented with 10% (v/v) porcine
122 follicular fluid, 0.57 mM cysteine, 50 mg/L gentamicin sulphate and 0.5 mg/L porcine
123 follicle-stimulating hormone (Folltropin-V, Bioniche, Belleville, Ontario, Canada) plus 0.5
124 mg/L porcine luteinizing hormone (Lutropin-V, Bioniche) (control medium) under mineral
125 oil at 39°C for 44 h in a 5% CO₂ atmosphere [23]. <u>G</u>

Different compounds were added to the control medium. Modulators of
glycolyticsis antagonists (÷5 mM NaF and, 10 mM ATP) and agonists (40 mM AMP.) and
Modulators of PPP antagonists (÷0.025 mM 6-AN, 0.125 mM NADPH) and agonists (12.5
mM NADP) were added separately to control culture media. The concentrations of each

Comment [MM4]: Need to know how many COCs and the volume used for standard IVM, ie all the experiments except glucose/lactate

¹¹⁸ *Oocyte in vitro maturation*

modulator were chosen based on the 50 % inhibition of the respective pathway in aprevious work [24].

To investigate the effects of manipulating carbohydrate metabolism in COCs on 132 133 subsequent meiotic progression, the oocyte nuclear morphology was evaluated at 0, 24, 32, 40 and 44 h of maturation. These time points were chosen because they are temporally 134 associated with key events of the maturation process, namely germinal vesicle breakdown 135 136 (GVBD), metaphase I (MI), extrusion of the first polar body and MII, respectively [25]. To evaluate meiotic progression, COCs were incubated in 1 g/L hyaluronidase in PBS medium 137 for 5 min at 37°C and the oocytes were mechanically denuded by gentle pipetting. Oocytes 138 139 were fixed for 15 min (2% glutaraldehyde in PBS), cultured with 1% Hoechst 33342 in PBS stained for 15 mins-,(1% Hoechst 33342 in PBS) andfinally washed in PBS containing 140 1 mg/ml polyvinylpyrrolidone and mounted on glass slides. Oocytes were examined under 141 an epifluorescence microscope using 330 to 380 nm (excitation) and 420 nm (emission) 142 filters at 250x and 400x magnification and allocated in the different meiotic stages 143 according to nuclear configuration. 144 145 Number of replicates and the number of COCs used were treatment? This needs to be added at the end of each experiment. 146 147

148 *Evaluation of glycolytic activity in COCs*

150	To evaluate glycolytic activity in COCs during IVM, <u>glucose consumption and</u>	
151	lactate production per COC was determined. COCs were individually matured in 20-µl	
152	droplets of culture medium for 44 h, then removed from the droplets and and the glucose	
153	and lactate content-concentrations inof the spent maturation medium wereas assessed.	
154	Lactate concentration was measured using a spectrophotometric assay based on the	
155	oxidation of this compound by lactate oxidase and the subsequent determination of the	
156	hydrogen peroxide formed [26] <u>and</u> .	
157	Additionally, gglucose_uptake concentrations per COC was measured in a similar	
158	manner by determining the glucose content of in the spent maturation medium but were	
159	determined in a similar manner, except using using glucose oxidase [26,27].	
160	Twenty-microlitre droplets of maturation medium without cells were included in	
161	each experiment to provide glucose and lactate reference concentrations and, glucose	
162	consumption and lactate production were expressed as nmol/COC/44h.	
163		
164	Was a standard curve produced at the same time?	
165	(Have you thought about analysing glucose/lactate after shorter culture times? Just	
166	<u>curious!)</u>	
167		
168	Evaluation of PPP activity_in COCs	
169		

170	To evaluate PPP activity during IVM in COCs, the Brilliant Cresyl Blue (BCB) test		
171	for immature oocytes was performed [28] with some modifications to be adapted to the		
172	porcine oocyte IVM. Groups of 30 COCs were matured in 600 μ l droplets of culture		
173	medium for 41 hours and then transferred for the last 3 hours of IVM to the same culture		
174	medium which had been added with containing 4.8 µM of BCB. At the completion of the		
175	culture, Oocytes oocytes were denuded as previously described and finally separated into		
176	two different groups according to their cytoplasmic colouration: BCB-positive oocytes		
177	(with blue cytoplasmic colouration) indicate a low activity of PPP, whereas BCB-negative		
178	oocytes (with no blue cytoplasmic colouration) indicate a high activity of PPP.		
179			
179 180	Evaluation of oxidativ <mark>e and mitochondrial activitiemass s in oocytes</mark>		
179 180 181	<mark>Evaluation of oxidativ</mark> e and mitochondrial activitie<u>mass</u> s in oocytes		
179 180 181 182	<i>Evaluation of oxidative and mitochondrial activitiemass s in oocytes</i> The oxidative and mitochondrial-activity and mitochondria massies were evaluated		
179 180 181 182 183	<i>Evaluation of oxidative and mitochondrial activitie<u>mass</u> in oocytes The oxidative and mitochondrial activity and mitochondria massies were evaluated at 0, 24, 32, 40 and 44 h of maturation. The c<u>C</u>umulus cells were removed mechanically by</i>		
 179 180 181 182 183 184 	<i>Evaluation of oxidative and mitochondrial activitiemass s in oocytes</i> The oxidative and mitochondrial activity and mitochondria massies were evaluated at 0, 24, 32, 40 and 44 h of maturation. The cCumulus cells were removed mechanically by repeated pipetting in PBS with 1 g L ⁻¹ hyaluronidase and before the zona pellucida was		
 179 180 181 182 183 184 185 	<i>Evaluation of oxidative and mitochondrial activitiemass s in oocytes</i> The oxidative and mitochondrial activity and mitochondria massies were evaluated at 0, 24, 32, 40 and 44 h of maturation. The cCumulus cells were removed mechanically by repeated pipetting in PBS with 1 g L ⁻¹ hyaluronidase and before the zona pellucida was dissolved with 5 g L ⁻¹ pronase for 1 min. The dual stains of Redox Sensor red CC 1 and		

187 final concentration of 1nM RedoxSensor red CC-1 and 0.5 nM Mito Tracker green FM (did

- 188 you get both from Invitrogen/Molecular Probes?), for 30 min at 37°C in the dark and then
- 189 washed twice in PBS. Stained oocytes were then-mounted on glass slides and fluorescence
- 190 was measured were captured using digital microphotographs obtained with an
- 191 epifluorescence microscope (company), using excitation/emission ~540/600 nm filters for

Comment [MM5]: Could you please send me a few images of the stained ooctes? We've never been able to get mitotracker green to work.

For future work, I highly recommend using a rosamine based dye such as Mitotracker Red CMXRos as fluoro is dependent on MMP, it works well with live cells and oocyte pentration is a lot stronger. You can also get a deep red version if you want to use it in conjuction with Redox sensor red.

To measure MMP, the oocyes need to be live. Fixing, and permeablisation would be killing these oocytes

192	RedoxSensor Red CC-1 and excitation/emission~490/520 nm filters for MitoTracker green	
193	FM. All microphotographs were analysed using Image J 1240 software (Research Services	Comment [MM6]: Magnification? Did you have an standards or any way to
194	Branch, National Institute of Mental Health, Bethesda, MD, USA), measuring the	control for different replicates/runs?
195	brightness of each oocyte.	Comment [MM7]: Mean or maximum intensity?
196		
197	Stats?	
198		
199	<u>Results</u>	
200		
201	Glycolytic activity in COCs and oocyte maturation	
202		
203	Lactate, the end product of glycolysis, and glucose were measured in IVM medium	Comment [MM8]: Add some figures, either the raw data, fold changes etc to
204	to assess the activity of glycolysis in porcine COCs in the presence of the different	make results appear stronger.
205	modulators. When matured The maturation in the presence of NaF and ATP, glucose uptake	
206	by COCs was at least 2-fold lower than the control induced a decrease in the lactate	
207	production and in the glucose uptake per COC respectively (Tabel 1; P<0.05). Likewise,	
208	lactate production was also reduced when COCS were exposed to NaF and ATP (Table 1;	
209	P<0.05). NaF having the most profound effect on glucose and lactate levels inducing 3.2	
210	less glucose consumption and 9.6-fold less lactate production compared to the control	
211	group. ; hHowever, AMP supplementation did not showed no effect affect glucose and	
212	lactate levels (Table 1).	

213	Inhibition of glycolysis with NaF and ATP resulted in delayed progression of
214	nuclear maturation (Table 2). In the presence of NaF and ATP, the percentage of oocytes
215	remaining at germinal vesicle (GV) stage after 24 h of culture were-was significantly higher
216	than in control -and -AMP groups (Table 2; P<0.05). At 32 h of maturation the percentage
217	of oocytes at MI were lower in the presence of NaF and ATP than in control and AMP
218	groups (P<0.05). At the end of maturation period (44 h) the percentage of oocytes at MII
219	were lower in the presence of NaF and ATP than in control and AMP groups (P<0.05),
220	with NaF inducing a 4.3% of oocytes to be blocked at MI and remaining mainly in MI with
221	NaF a 50% of oocytes exposed to ATP blocked at the GV stagend in germinal vesicle with
222	ATP (Table 2).
223	
224	<u>The impact of Glycolytic Glycolysis activity</u> in COCs and <u>on</u> oocyte oxidative activity
225	
226	To determine the impact of glycolytic activity in COCs on oxidative status within
227	the oocyte, denuded oocytes were stained with Redox Sensor Red to quantify oxidative
228	activity at different time pointsduring maturation. Oocytes exhibited variations in
229	Oexidative activity within oocytes fluctuated throughout maturation in control group, and
230	was significantly lower between 24-32 h, with the lowest activity seen at 32h. showing a
231	fall until 32 h, followed by an increase at 40 and 44 hOxidative activity then recovered to
232	levels similar levels as 0 h by 40 and 44 h (P<0.05). A similar pattern of oxidative activity
233	was seen with the addition of NaF. However induced the decrease in oxidative activity
234	remained low at 40 and 44 h of maturation ($P < 0.05$, Fig 1a), ATP supplementation

235	significantly reduced, while in the presence of ATP oxidative activity decreased from 24 to	
236	44 h (P<0.05, Fig. 1b). Oxidative activity within the oocyte did not change from control	
237	group in presence of AMP (Fig. 1c.).	
238		
239	Glycolytic activity in COCs and oocyte mitochondrial activitymass	
240		
241	To determine the impact of glycolytic activity in COCs on the mitochondrial	
242	activity mass within the oocyte, the fluorescence intensity of Mito Tracker Green within the	
243	oocytes was analyzed at different time points. Oocyte mitochondrial activity mass showed	
244	the <u>a similar</u> same pattern of variations than <u>as</u> oxidative activity throughout maturation in	
245	control group, with mitochondrial mass decreasing after 24h, was at its lowest at 32 h and	
246	then increased to levels similar to 24h by 40 and 44 h (P<0.05). The addition of NaF	
247	induced the decrease in mitochondrial activity mass at 40 and 44 h of maturation (P<0.05,	
248	Fig 2a), whereas in the presence of ATP mitochondrial activity-mass decreased at 24, 40	
249	and 44 h (P<0.05, Fig. 2b). Mitochondrial activity mass within the oocyte did not change	
250	from control group in presence of AMP (Fig. 2c.).	
251		
252	PPP activity in COCs and oocyte maturation	
252		
255		
254	BCB stain was used to evaluate PPP activity in COCs following 44 h cultures in the	
255	presence of PPP modulates, with BCB- oocytes (clear) indicating active PPP within the	

c

...

256	oocyte. 6-AN and NADPH induced a decrease in percentage of COCs with active PPP		
257	compared to the control group (control = 91.9% vs. $6-AN = 58.3\%$ and NADPH = 50%		
258	BCB-/total oocytes(; P<0.05).; howeverHowever, NADP supplementation did not showed		
259	no effect (Table 3)influence the proportion of BCB- oocytes (85.2% BCB-/total oocytes).		
260	In tThe presence of PPP inhibitors 6-AN and NADPH delayed the resumption of		
261	meiosis, with significantly more the percentage of oocytes remaining at the GV germinal		
262	vesicle stage after 24 h of culture and MI stage at 32h were compared to higher than in the		
263	control and NADP groups (P<0.05). At 32 h of maturation the percentage of oocytes at MI		
264	were lower in the presence of 6-AN and NADPH than in control and NADP groups		
265	(P<0.05). Following 44 h of culture, At the end of maturation period of 44 h the percentage		
266	of oocytes at MII were lower in the presence of 6-AN and NADPH than in control and		
267	NADP groups (P<0.05), with a large proportion of oocytes remaining mainly inat the MI		
268	stage when exposed to with botheither of the PPP inhibitors (Table 4).		
269			
270	PPP activity in COCs and oocyte oxidative activity		
271			
272	Denuded oocytes were stained with Redox Sensor Red to quantify oxidative activity		
273	at different time points. The presence of PPP inhibitors significantly reduced oxidative		
274	activity within oocytes compared to the control group (figure 3). The addition of 6-AN		
275	supplementation induced the decreased in occyte oxidative activity from between 24 to 44		
276	h of maturation (P<0.05, Fig 3a), whereas in the presence of NADPH _a oxidative activity		

277	decreased at 24, 40 and 44 h (P<0.05, Fig. 3b). Oxidative activity within the oocyte did not		
278	change from control group in presence of NADP (Fig. 3c.).		
279			
280	PPP activity in COCs and oocyte mitochondrial activitymass		
281			
282	To determine the impact of PPP activity in COCs on the mitochondrial activity mass		
283	of the oocyte, the fluorescence intensity of Mito Tracker Green within the oocytes was		
284	analyzed at different time points. Oocyte mitochondrial activity mass showed the same		
285	pattern of variations than inas oxidative activity throughout maturation in control group		
286	(P<0.05). The addition of 6-AN and NADPH induced the decrease lower min mitochondrial		
287	activity-mass at 24, 40 and 44 h of maturation (P<0.05, Fig 4a and 4b). Mitochondrial		
288	activity-mass within the oocyte did not change from control group in presence of NADP		
289	(Fig. 4c.).		
290			
291	Discussion		
292			
293	The present study describes the effects of glycolytic and PPP modulators during		
294	porcine oocyte IVM on the mitochondrial mass, and oxidative activityies and maturation		
295	rate of the oocytes. The modulation of glycolysis and PPP in COCs demonstrated the		
296	impact of these pathways on oxidative and mitochondrial activities within the oocyte and		
297	on the subsequent oocyte maturation.		

298	In the present study, fFluctuations in oxidative metabolism and mitochondrial	
299	activities mass of porcine oocytes were observed during IVM for the first time. In addition,	
300	both parameters exhibited a similar pattern of variations during maturation. Fluorescence	
301	analysis showed a fall in oxidative metabolism and mitochondrial activities mass from the	
302	beginning until 32 h of maturation, followed by an increase at 40 h of IVM. It has been	
303	proposed_that the metabolic activity of the oocyte increases in the latter_half of the meiotic	
304	maturation process [7], therefore, oxidative and mitochondrial activities may be reflecting	
305	the metabolic activity at this maturation time.	
306	Glycolysis iInhibition of glycolysis by pharmacological and physiological	
307	modulators, NaF and ATP, was confirmed by the decrease in lactate production and	
308	glucose consumption by porcine COCs. The reduced glycolytic activity, in presence of	
309	inhibitors, seems to provoke lower oxidative <u>activity</u> and mitochondrial activities mass	
310	within the porcine oocyte during IVM, compared with untreated COCs. This inhibition also	
311	affected oocyte maturation rate. The percentage of oocytes at MII after 44 h of culture was	
312	lower in the presence of both inhibitors, remaining mainly a large proportion of oocytes	
313	blocked at -inthe MI stage with NaF and in germinal vesicle GV stage with ATP. We have	
314	already demonstrated the effect of glycolysis inhibition in COCs on oocyte maturation	
315	rate[24]; however, now we can further propose the participation of oxidative status and	
316	mitochondrial function mass in this phenomenon. This is probably due to a lack of	
317	substrates provided from cumulus glycolytic activity to the gamete during the inhibition of	
318	the pathway. It has been suggested gGlycolysis is high in cumulus cells order to allow the	
319	generation of a ATP and produce pyruvate, lactate, malate and/or oxalacetate, which are	
320	readily used as oxidative substrates by the oocyte [6,9,29,30]. On the other hand, AMP	

321	cannot-did not modify neither glycolytic activity in COCs nor oxidative and mitochondrial	
322	activities in oocytes. The concentration of AMP used in this study was similar or higher	
323	than that reported previously to be effective for stimulating phosphofructokinase1[31-33].	
324	Our findings showed that the addition of the pharmacological and physiological	
325	inhibitors of PPP, 6-AN and NADPH, to the maturation media are effective to diminish the	
326	percentage of COCs with high activity of the pathway. The low PPP activity seems to	
327	reduce the oxidative metabolism and mitochondrial activities mass of the oocyte, compared	
328	with untreated COCs, . We observed in asimilarly to previous work the effect of PPP	
329	inhibition in COCs on oocyte maturation rate [24]. Furthermore, a close relationship	Comment [MM9]: Im not sure what this sentence means
330	between PPP activity and the maturation process in the porcine oocyte has been	
331	proposed[16]. It has been suggested that the PPP is a primary factor for the progression of	
332	nuclear maturation[1]. Accordingly, it was demonstrated that and the flux of glucose	
333	throughout the PPP influences the resumption of oocyte nuclear_maturation in mouse COC	
334	[34]- and It has also beenproposed that the PPP is involved in the progression of all stages	
335	of meiosis, including the resumption of meiosis, MI-MII_transition and the resumption of	
336	meiosis after fertilization [16,35]. However, the results reported in this study shows for the	
337	first time the implications of oxidative metabolism and mitochondrial activities mass on the	
338	meiotic progression of the oocyte.	
339	In addition, The the activity of PPP is important in the regulation of cell redox	
340	levels [21] and in events related to the resumption of meiosis [15,16]. In hamster oocytes, it	Comment [MM10]: A little repetative
341	has been suggested that the PPP is important not only for preventing cell oxidative stress	
342	throughout the glutathione system, but also for the maintenance_of meiotic spindle	
343	morphology by protecting the spindle against oxidative damage [36]. Mitochondrial	

344	activity is essential for oocyte_competence, and the ATP content of oocytes generated from
345	the reducing equivalents derived from carboxylic acid metabolism through the tricarboxylic
346	acid (TCA) cycle is highly correlated with oocyte competence[14,37].; howeverHowever,
347	in the present work we had also demonstrated the participation of oocyte oxidative status in
348	the meiotic progress of the oocyte. The addition of NADP, a physiological stimulator of
349	PPP, in the IVM medium had caused no effect on the percentage of COCs with high
350	activity of this metabolic_route. PPP activity seems to be high during porcine_oocyte
351	maturation, and NADP supplementation seems_to be unable to further stimulate this
352	pathway. Therefore, we cannot observe any modification neither oxidative activity nor
353	mitochondrial activity in the presence of NADP; despite the concentration utilized in the
354	present work was higher than the ones reported to be effective in stimulate the enzyme
355	glucose-6-phosphate dehydrogenase [18] and the PPP[38].
356	In conclusion, we have reported for the first time the fluctuations in the oocyte
357	oxidative and mitochondrial activities during porcine oocyte IVM. The pattern of
358	fluctuation is modified by the inhibition of glycolysis and PPP in COCs; furthermore, this
359	condition impaired meiotic progression. We demonstrated the relationship between
360	carbohydrate metabolism in COC and oocyte redox status necessary for porcine oocyte
361	maturation.

363 Conflicts of interest

The authors declare they have no conflicts of interest that might impede their impartiality with respect to the work performed.

367

368 Funding

369

370	This work was funded by the University of Buenos Aires, Argentina (grant number
371	UBACyTGC 20020100100535) and the National Scientific and Technological Research
372	Council (grant number PIP-CONICET 11220110100643). MSM and JT are funded by the
373	Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
374	<u>(CE140100003).</u>

375

376 Acknowledgements

377

The authors thank the Japanese International Cooperation Agency (JICA) for technology transfer and equipment, the Minguillon abattoir for ovaries, Astra Laboratories for ultra-pure water, and ETC Internacional S.A. for donation of cell culture products.

381

382	Figure	legends

383

384 Figure 1

- 385 Oxidative activity within oocytes matured in the presence of (a) 5 mM NaF, (b) 10 mM
- ATP and (c) 40 mM AMP. Data are the mean \pm s.e.m. (n = 30-40 COCs for each treatment
- in three replicates). Bars of the same colour with different letters differ significantly
- 388 (P<0.05). * Indicates differences at the same time point between treatments (P<0.05).

Comment [MM11]: Sample number and replicates needs to be added to the methods section

389

- 390 Figure 2
- 391 Mitochondrial activity within oocytes matured in the presence of (a) 5 mM NaF, (b) 10 mM
- 392 ATP and (c) 40 mM AMP. Data are the mean \pm s.e.m. (n = 30-40 COCs for each treatment
- in three replicates). Bars of the same colour with different letters differ significantly
- (P<0.05). * Indicates differences at the same time point between treatments (P<0.05).

395

396 Figure 3

- 397 Oxidative activity within oocytes matured in the presence of (a) 0.025 mM 6-AN, (b) 0.125
- 398 mM NADPH and (c) 12.5 mM NADP. Data are the mean \pm s.e.m. (n = 30-40 COCs for
- as each treatment in three replicates). Bars of the same colour with different letters differ
- 400 significantly (P<0.05). * Indicates differences at the same time point between treatments
- 401 (P<0.05).

402

403 Figure 4

404	Mitochondrial activity within oocytes matured in the presence of (a) 0.025 mM 6-AN, (b)				
405	0.125 mM NADPH and (c) 12.5 mM NADP. Data are the mean \pm s.e.m. (n = 30-40 COCs				
406	for each treatment in three replicates). Bars of the same colour with different letters differ				
407	significantly (P<0.05). * Indicates differences at the same time point between treatments				
408	(P<0.05).				
409					
410					
411					
412		Bibliography			
413					
414	[1]	Sato H., Iwata H., Hayashi T., Kimura K., Kuwayama T., Monji Y. (2007) The effect of			
415		glucose on the progression of the nuclear maturation of pig oocytes. Anim Reprod Sci, 99,			
416		299-305.			
417	[2]	Wongsrikeao P., Otoi T., Taniguchi M., Karja N.W., Agung B., Nii M., Nagai T. (2006) Effects			
418		of hexoses on in vitro oocyte maturation and embryo development in pigs.			
419		Theriogenology, 65 , 332-343.			
420	[3]	Funahashi H., Koike T., Sakai R. (2008) Effect of glucose and pyruvate on nuclear and			
421		cytoplasmic maturation of porcine oocytes in a chemically defined medium.			
422		Theriogenology, 70 , 1041-1047.			
423	[4]	Krisher R.L., Brad A.M., Herrick J.R., Sparman M.L., Swain J.E. (2007) A comparative			
424		analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim			
425	[6]	Reprod Sci, 98, 72-96.			
420	[5]	and aporto cumulus coll complexes. <i>Biol Papered</i> 60 1446 1452			
427	[6]	Cetica P. Pintos I. Dalvit G. Beconi M. (2002) Activity of key enzymes involved in glucose			
420	[0]	and triglyceride catabolism during boyine oncyte maturation in vitro. <i>Reproduction</i> 124			
430		675-681.			
431	[7]	Preis K.A., Seidel G., Jr., Gardner D.K. (2005) Metabolic markers of developmental			
432	r. 1	competence for in vitro-matured mouse oocytes. <i>Reproduction</i> . 130 . 475-483.			
433	[8]	Alvarez G.M., Dalvit G.C., Cetica P.D. (2012) Influence of the cumulus and gonadotropins			
434		on the metabolic profile of porcine cumulus-oocyte complexes during in vitro maturation.			
435		Reprod Domest Anim, 47, 856-864.			
436	[9]	Cetica P.D., Pintos L.N., Dalvit G.C., Beconi M.T. (1999) Effect of lactate dehydrogenase			
437		activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates			
438		on in vitro maturation. <i>Theriogenology</i> , 51 , 541-550.			

439 [10] Sutton M.L., Cetica P.D., Beconi M.T., Kind K.L., Gilchrist R.B., Thompson J.G. (2003) 440 Influence of oocyte-secreted factors and culture duration on the metabolic activity of 441 bovine cumulus cell complexes. Reproduction, 126, 27-34. 442 [11] Schirmer T., Evans P.R. (1990) Structural basis of the allosteric behaviour of 443 phosphofructokinase. Nature, 343, 140-145. 444 [12] Clarenburg R. (1992) Carbohydrate metabolism. In: Reinhardt R (ed), Physiological 445 chemistry of domestic animals. Saint Louis: Mosby Year Book Inc,239-291. 446 [13] Mayes P.A., Bender D. (2004) Glucólisis y la oxidación del piruvato. In: Murray R (ed), Harper. Bioquímica Ilustrada, 16º edition. México, D.F.: Editorial El Manual Moderno, S.A. 447 448 de C.V., 153-161. [14] Dumollard R., Ward Z., Carroll J., Duchen M.R. (2007) Regulation of redox metabolism in 449 450 the mouse oocyte and embryo. Development, 134, 455-465. 451 [15] Harvey A.J., Kind K.L., Thompson J.G. (2002) REDOX regulation of early embryo 452 development. Reproduction, 123, 479-486. 453 [16] Herrick J.R., Brad A.M., Krisher R.L. (2006) Chemical manipulation of glucose metabolism in 454 porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction, 455 131, 289-298. 456 [17] Stanton R.C. (2012) Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. 457 IUBMB Life, 64, 362-369. 458 [18] Ozer N., Bilgi C., Hamdi Ogus I. (2002) Dog liver glucose-6-phosphate dehydrogenase: 459 purification and kinetic properties. Int J Biochem Cell Biol, 34, 253-262. 460 [19] Kohler E., Barrach H., Neubert D. (1970) Inhibition of NADP dependent oxidoreductases by 461 the 6-aminonicotinamide analogue of NADP. FEBS Lett, 6, 225-228. [20] Tyson R.L., Perron J., Sutherland G.R. (2000) 6-Aminonicotinamide inhibition of the 462 463 pentose phosphate pathway in rat neocortex. Neuroreport, 11, 1845-1848. 464 [21] Tian W.N., Braunstein L.D., Pang J., Stuhlmeier K.M., Xi Q.C., Tian X., Stanton R.C. (1998) 465 Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem, 466 273, 10609-10617. [22] Pandolfi P.P., Sonati F., Rivi R., Mason P., Grosveld F., Luzzatto L. (1995) Targeted 467 468 disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase 469 (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against 470 oxidative stress. EMBO J, 14, 5209-5215. 471 [23] Abeydeera L.R., Wang W.H., Prather R.S., Day B.N. (2001) Effect of incubation temperature 472 on in vitro maturation of porcine oocytes: nuclear maturation, fertilisation and 473 developmental competence. Zygote, 9, 331-337. 474 [24] Alvarez G.M., Ferretti E.L., Gutnisky C., Dalvit G.C., Cetica P.D. (2013) Modulation of 475 glycolysis and the pentose phosphate pathway influences porcine oocyte in vitro 476 maturation. Reprod Domest Anim, 48, 545-553. 477 [25] Ocampo M.B., Ocampo L.T., Kanagawa H. (1991) Timing of sequential changes in 478 chromosome configurations during the 1st meiotic division of pig oocytes cultured in vitro. 479 Jpn J Vet Res, 38, 127-137. 480 [26] Barham D., Trinder P. (1972) An improved colour reagent for the determination of blood 481 glucose by the oxidase system. Analyst, 97, 142-145. [27] 482 Gutnisky C., Dalvit G.C., Pintos L.N., Thompson J.G., Beconi M.T., Cetica P.D. (2007) 483 Influence of hyaluronic acid synthesis and cumulus mucification on bovine oocyte in vitro 484 maturation, fertilisation and embryo development. Reprod Fertil Dev, 19, 488-497.

485	[28]	Wongsrikeao P., Otoi T., Yamasaki H., Agung B., Taniguchi M., Naoi H., Shimizu R., Nagai T.
486		(2006) Effects of single and double exposure to brilliant cresyl blue on the selection of
487		porcine oocytes for in vitro production of embryos. <i>Theriogenology</i> , 66 , 366-372.
488	[29]	Cetica P., Pintos L., Dalvit G., Beconi M. (2003) Involvement of enzymes of amino acid
489		metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro.
490		Reproduction, 126 , 753-763.
491	[30]	Brackett B., Zuelke K. (1993) Analysis of factors involved in the in vitro production of
492		bovine embryos. <i>Theriogenology,</i> 39 , 43-64.
493	[31]	Simpfendorfer R.W., Oelckers K.B., Lopez D.A. (2006) Phosphofructokinase from muscle of
494		the marine giant barnacle Austromegabalanus psittacus: kinetic characterization and
495		effect of in vitro phosphorylation. Comp Biochem Physiol C Toxicol Pharmacol, 142, 382-
496		389.
497	[32]	Kamp G., Schmidt H., Stypa H., Feiden S., Mahling C., Wegener G. (2007) Regulatory
498		properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa.
499		Reproduction, 133 , 29-40.
500	[33]	Breininger E., Vecchi Galenda B.E., Alvarez G.M., Gutnisky C., Cetica P.D. (2014)
501		Phosphofructokinase and malate dehydrogenase participate in the in vitro maturation of
502		porcine oocytes. Reprod Domest Anim, 49, 1068-1073.
503	[34]	Downs S.M., Humpherson P.G., Leese H.J. (1998) Meiotic induction in cumulus cell-
504		enclosed mouse oocytes: involvement of the pentose phosphate pathway. <i>Biol Reprod</i> , 58 ,
505		1084-1094.
506	[35]	Sutton-McDowall M.L., Gilchrist R.B., Thompson J.G. (2005) Effect of hexoses and
507		gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro
508		maturation in a synthetic follicle fluid medium. Reprod Fertil Dev, 17, 407-415.
509	[36]	Zuelke K.A., Jones D.P., Perreault S.D. (1997) Glutathione oxidation is associated with
510		altered microtubule function and disrupted fertilization in mature hamster oocytes. Biol
511		Reprod, 57 , 1413-1419.
512	[37]	Stojkovic M., Machado S.A., Stojkovic P., Zakhartchenko V., Hutzler P., Goncalves P.B.,
513		Wolf E. (2001) Mitochondrial distribution and adenosine triphosphate content of bovine
514		oocytes before and after in vitro maturation: correlation with morphological criteria and
515		developmental capacity after in vitro fertilization and culture. <i>Biol Reprod</i> , 64 , 904-909.
516	[38]	Preller A., Guixe V., Ureta T. (1999) In vivo operation of the pentose phosphate pathway in
517		frog oocytes is limited by NADP+ availability. FEBS Lett, 446, 149-152.