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Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple
NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the
study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4
sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in
NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of
a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-
dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and
germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis.
We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or
piRNA-like Sox4_sir3.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Less than 2% of the 3 billion bases in the human genome consist
of protein coding sequences [1,2]. The Encyclopedia of DNA Elements
(ENCODE) project showed as much as 90% of the studied 30 million
bases of the human genome were transcribed, mostly into non-
protein coding RNA [3]. This finding is in agreement with previously
reported transcriptional landscapes of the mammalian genome [4–6]
suggesting the previously termed ‘junk’ DNA contributes far more to
the transcriptional profile of an organism. These non-protein coding
transcripts differ from the canonical protein-coding transcripts and
other structural RNAs (e.g. rRNA and tRNA) in terms of their gene
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distribution, abundance of regulatory motifs and transcription start
sites, and evolutionary constraint [3,7]. As a consequence, these tran-
scripts are difficult to characterise functionally.

One type of non-protein coding transcript has sequences that are
partially/fully complementary to a protein-coding gene or RNA. These
transcripts are known as natural antisense transcripts (NATs) and are
either transcribed from the opposite DNA strand of the same protein-
coding gene locus (known as cis-NATs) or from different loci within
the genome (known as trans-NATs). To date, numerous NATs have
been discovered in the mammalian genome and up to 20% of protein
coding genes in human and mouse have at least one overlapping NAT
[8–11]. Although numerous sense-NAT pairs have been identified in
silico in the mammalian genome, only a handful of NATs such as Evf-2
[12], Air [13], HOTAIR [14] and Kcnq1ot1 [15] are implicated in a signifi-
cant biologicalmechanism. These NATs aremainly nuclear localised and
regulate gene expression during development through transcriptional
activation, transcriptional repression or via chromatin modification.
Differential regulation of NATs expression has been implicated in
various human disorders such as fragile X-associated tremor and ataxia
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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syndrome [16], breast, renal and colon cancer [17–19], human follicular
lymphoma [20], Beckwith–Wiedemann syndrome [21] and alpha-
thalassemia [22], implicating the involvement of NATs in disease devel-
opment. However, the mechanism underlying the role of NATs in
disease progression remains poorly characterised.

We previously reported that the Sox4 (Sry-related HMG box 4 gene)
gene locus produced multiple overlapping protein-coding mRNAs
and NATs during mouse cerebral corticogenesis [23]. Sox4 is a single
exon gene encoding a 47 kDa transcription factor containing a high-
mobility group (HMG) domain, which functions in DNA binding, DNA
bending, protein interactions and nuclear import or export [24,25].
Sox4 binds the DNA sequence (A/T)(A/T)CAA(A/T)G (or IUPAC code
WWCAAW) and in the presence of one or more specific co-factors,
can function as either a transcription repressor or activator [25,26]
that regulates various developmental processes such as lymphocyte
differentiation and bone, heart and brain development [27–31]. Its
expression has also been implicated in the progression or transfor-
mation of various tumours and cancerous cells [32–37]. In the central
nervous system, Sox4 regulates pan-neuronal gene expression that
involves in the establishment of neuronal properties [30], and must
be downregulated for proper myelination to occur [31]. The expres-
sion of multiple cis-NATs at the Sox4 gene locus may be required for
proper Sox4 protein synthesis through regulation of protein-coding
transcripts at either the transcription, post-transcription or transla-
tion level.

Sense and antisense transcripts may form double-stranded RNAs
(dsRNAs) or fold into conserved secondary hairpin structures that
serve as templates for the biogenesis of small RNAs [38]. Small
interfering RNA (siRNA), microRNA (miRNA) and PIWI-interacting RNA
(piRNA) are 3 major categories of small RNAs. PiRNA is the largest class
of small non-coding RNA molecules (24–32 nt) [39,40] that are dis-
tinct from miRNA (~22 nt) or siRNA (~20–25 nt) [41]. PiRNAs have
been associated with epigenetic or post-transcription silencing of
transposable elements in germ line cells [42,43] whereas both
miRNAs and siRNAs target mainly mRNAs to exert translational re-
pression or mRNA degradation [44,45]. The origin of small RNAs
has been extensively characterised and located at both intergenic
and intragenic regions [46,47] including tRNA genes [48,49]. Biogen-
esis of these small RNAs are different from each other and has been
extensively reviewed previously [41,45].

To investigate the role of Sox4 cis-NATs during brain development,
we characterised NATs at the Sox4 gene locus, and their underlying
regulatory effect on the Sox4 protein-coding transcripts. In this study,
we demonstrated that Sox4 cis-NATs is capable of forming double
stranded RNA with the Sox4 protein-coding (sense) transcripts in
the brain. Upregulation of a novel Sox4 NATs known as Sox4ot1 in an
artificial model lead to increased production of a novel small RNA
with unconfirmed siRNA or piRNA characteristics. The small RNA was
found expressed specifically in the germinative layers of the mouse
brain suggesting a rare phenomenon in the mammalian system where
sense-NATs serve as Dicer1-dependent templates in the cytoplasm to
produce a siRNA- or piRNA-like small RNA.
2. Materials and methods

2.1. Breeding and handling of animals

Breeding and handling of animals were carried out according to
guidelines approved by theMelbourneHealth Animal Ethics Committee
(Project numbers 2001.045 and 2004.041) and the University of
Adelaide Animal Ethics Committee (S-086-2005). All mice used in the
study were C57BL/6 unless otherwise specified. Mice were kept under
a 12 h light/12 h dark cycle with unlimited access to food and water
and were sacrificed by CO2 asphyxiation. Brain tissues and mouse
organs were dissected as described previously [23].
2.2. Rapid amplification of cDNA ends (RACE)-southern analysis

Total RNA was extracted from the E15.5 cerebral cortex using
RNeasy Lipid Tissue Mini Kit (QIAGEN) according to the manufacturer's
protocol. One thousandnanogramof pooled total RNA (n=3)was used
for 5′ and 3′ RACE analyses of Sox4 NATs. 5′ and 3′ RACE were carried
out using SMART™ RACE Amplification Kit (Clonetech) according to
the manufacturer's protocol. For both 5′ and 3′ RACE, up to seven Sox4
specific primers were included for first strand cDNA synthesis. These
primers were located over the ~5 kb Sox4 gene locus. Following cDNA
synthesis, PCR was individually performed using all seven primers and
a 5′ universal primer for 5′ RACE or 3′ adaptor primer for 3′ RACE
(Clontech). Amplified products were blotted onto Hybond-N+ nylon
membrane (GE Healthcare) and probed using independent oligonucle-
otides designed across the ~5 kb Sox4 gene locus to determine the
specific Sox4 amplicons. Independent oligonucleotide probes were end-
labelled using [γ-32P]-dATP and T4 polynucleotide kinase (Promega)
according to the manufacturer's protocol. Five and six probes were
used in 5′ and 3′ RACE analysis, respectively. See Supplementary
GenBank File in [50] for primers and probe sequences; it is recommend-
ed that the file is visualised using Artemis Genome Browser and Annota-
tion Tool [51]. Pre-hybridisation, hybridisation, washing and detection
procedures were performed according to previously published protocols
[23,52].
2.3. Real-time quantitative polymerase chain reaction (RT-qPCR)

Total RNAwas isolated fromvariousmouse organs and brain regions
using TRIzol® Reagent (Invitrogen). Contaminating genomic DNA
(gDNA) was removed from the total RNAs using the DNA-free™ Kit
(Applied Biosystems) according to the manufacturers' protocols.
Reverse transcription was performed using the Superscript® III Reverse
Transcriptase Kit (Invitrogen) according to themanufacturer's protocol.
RT-qPCR and relative quantification analyseswere carried out according
to published methods [23,52]. The stemloop RT-qPCR analysis of
Sox4_sir3 was performed based on a published protocol [53] by using
specific primers such as stem loop primer (5′-GTTGGCTCT GGTAGGATG
CCGCTCTCA GGGCATCCT ACCAGAGCCA AACGGAATC-3′, GeneWorks), a
universal reverse primer (5′-GTAGGATGCCGCTCTCAGG-3′, GeneWorks)
and a specific forward primer for Sox4_sir3 (5′-TCTGACTCAAGGACAGCG
AC AA-3′, GeneWorks).

In all relative quantification analysis, One-way Analysis of Variance
(ANOVA) was used to compare the expression levels among groups,
brain tissues or mouse organs. A P value of b0.05 was considered statis-
tically significant. The least significant difference(s) (LSD)were provided
when significant differences were detected among the groups.
2.4. RNA fluorescence in situ hybridisation (RNA FISH)

Cells from the 56-day old (P56) adult mouse cerebral cortex, hippo-
campus, olfactory bulbs and cerebellum were obtained, fixed and
digested with RNase A. These procedures and the preparation of non-
overlapping complementary RNA (cRNA) probes for Sox4 sense and
antisense transcripts (see Supplementary GenBank File in [50]),
hybridisation, washing steps, staining and mounting of slides were car-
ried out essentially as described previously [52]. Both sense and anti-
sense cRNAs were labelled using two different Universal Linkage
System (ULS) haptens/dyes: Dynomics547-ULS (absorbance at
547 nm and emission at 565 nm) for sense cRNA probe and
Dynomics415-ULS (absorbance at 415 nm and emission at 472 nm)
for antisense cRNA probe. The acquisition of immunofluorescence cell
images was performed by using a Zeiss Axioplan 2 Imaging upright mi-
croscope with Axiovision software. Images were acquired when slides
were observed under the 100X objective lens with oil immersion.
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2.5. Locked nucleic acid-in situ hybridisation (LNA-ISH)

Preparation of paraffin embedded sections (8 μm), pre-
hybridisation, hybridisation, washing, antibody reaction and colour
development steps were performed essentially as described previously
[53]. Custom-made Sox4_sir3 LNA probes (Cat. no: EQ-70537, Exiqon)
were used for the LNA-ISH experiment. Whole brain images were
acquired by using an Olympus DP70 digital camera mounted on a
Nikon SMZ1000 dissection microscope with AnalySIS software.

2.6. Mouse embryonic stem (mES) cells with Dicer1C allele

Mouse embryonic stem (mES) cells with DICER1 activity were
obtained from a line heterozygous for a conditionally mutant
Dicer1 allele (Dicer1c) and a null Dicer1 allele (Dicer1−). These
genetic modifications were described previously [55]. mES cells
without Dicer1 activity were produced by transient transfection of
this Dicer1c/− line with Cre recombinase to produce Dicer1−/−

subclones [82].

2.7. NIH/3T3 mouse fibroblast cell line

NIH/3T3 cells were obtained from American Type Culture Collection
(www.atcc.org) andmaintained in Dulbecco'sModified Eagle'sMedium
(Sigma Aldrich) supplemented with 10% (v/v) heat-inactivated foetal
calf serum (FCS; Invitrogen), 100 units/ml penicillin, 100 μg/ml strepto-
mycin and 2 mM L-glutamine. Cells were subcultured into new dishes
when they reached 80% confluence or less using approximately 3–
5 × 103 cells/cm2 inoculums.

2.8. Overexpression of Sox4 NATs

Full length Sox4 NATs were amplified from mouse gDNA using the
paired-end ditags sequences as primers (see Supplementary GenBank
File in [50]). Proofreading polymerase enzyme from Expand Long Tem-
plate PCR System Kit (Roche Diagnostics) was used to amplify Sox4
NATs (with sizes between 0.8 and 3 kb) from gDNA. Amplicons were
blunt-end-cloned into pcDNA3 vector (Invitrogen) at EcoRV restriction
site. The right clones were screened by orientation- and Sox4-specific
PCR. The sizes of the constructs were validated by gel electrophoresis.
Confirmed Sox4 NAT constructs, namely, PET2, PET3, PET5 and PET6,
were individually co-transfected into NIH/3T3 cells together with
pcDNA3-eGFP constructs using Lipofectamine™ 2000 Transfection
Reagent (Invitrogen) according to the manufacturer's protocol. PET
construct to pcDNA-eGFP construct ratio used during transfection was
3:2. Equal number of molecules for PET2, PET3, PET5 and PET6 were
considered in each transfection and pUC18 vectorwas added to normal-
ise the total amount of DNA transfected (6 μg per 2 million cells) into
NIH/3T3 cells. Each transfection for PET construct was controlled by a
mock transfection using pcDNA3-empty vector and without any DNA
(blank control).

2.9. Immunoblotting analysis

Approximately 24 h after transfection, cells were lysed in ice-cold
lysis buffer [(50 mM Tris.HCl, pH 7.4, with 1% NP-40, 150 mM NaCl,
2 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N,N-tetraacetic
acid, 1 mM NaVO4, 100 mM NaF, 10 mM Na4P2O7, and EDTA-free
protease inhibitor cocktail (Roche)]. Protein concentrationswere assayed
using Bradford Reagent (BioRad) according to the manufacturer's proto-
col. Equal amounts of protein (~20 μg) were loaded onto 10% acrylamide
gels, separated by sodium dodecyl sulphate-polyacrylamide gel electro-
phoresis (SDS-PAGE). Electrophoresed proteins were transferred onto
Amersham Hybond™-P hydrophobic polyvinylidene difluoride (PVDF)
membrane followed by blocking with 5% (w/v) skim milk powder with
0.1% (v/v) Triton-X100 prepared in 1X PBS. The membrane was probed
with a primary polyclonal rabbit antibody directed against Sox4 (Cat.
No.: AB80261, Abcam) or polyclonal goat antibody directed against
actin (Cat. No.: SC-1616, Santa Cruz) at 4 °C overnight followed by
ImmunoPure® Goat Anti-Rabbit IgG, (H + L) Peroxidase Conjugate
(Cat. No.: 31460, Pierce) or Polyclonal Rabbit Anti-Goat Immunoglobu-
lins/HRP (Cat. No.: P0449, Dako) secondary antibody. Reactive bands
were detected using Amersham ECL Plus™ Western Blotting Detection
Reagents (GE Healthcare) according to the manufacturer's protocol.
Pixelation analyses of bands were performed using ImageJ software
according to the standard protocol published at http://rsb.info.nih.gov/ij.
3. Results

3.1. Sox4 NATs have multiple transcription start sites and polyadenylation
sites

To characterise Sox4 NATs that were expressed during brain devel-
opment, we performed 5′ and 3′ RACE-southern analyses using E15.5
mouse cerebral cortex total RNA and combinations of primers/probes
designed across the Sox4 gene locus (Fig. 1A–D). To aid identification
of full length Sox4 NATs, we mapped previously described Sox4 SAGE
tags generated from 4 developmental stages of the mouse cerebral
cortex to both sense and antisense strands of the Sox4 gene locus [23].
Additional information from the 3′ RACE analysis of Sox4 NATs in the
same study was also mapped to our data (Fig. 1D). Next, we compared
our results to the FANTOM Paired-End Ditags (PET) sequences, which
were obtained from the Ensembl website (www.ensembl.org) and
mapped to the Sox4 gene locus (Fig. 1E). All primers, probes and
annotations at Sox4 gene locus are provided in one GenBank file (see
Supplementary GenBank File in [50]).

We identified multiple transcription start sites (TSSs) as well as
polyadenylation sites for Sox4 NATs across the entire Sox4 gene locus.
The 5′ RACE analysis showed 19 different TSSs for Sox4 NATs with 9
potential TSSs based on the prominent bands in southern analysis
(Fig. 1A and C). A total of 12 polyadenylation sites were found for Sox4
NATs based on 3′ RACE analysis, with four of them represented by
prominent bands in southern analysis (Fig. 1B and D). This suggests
that transcripts with different TSSs or polyadenylation sites have
different expression levels.

We compared our RACE results with the mapped PET sequences
(Fig. 1E). PET1-5 have TSSs that corresponded well (within ±100 nt)
to our mapped TSSs of Sox4 NATs based on 5′ RACE analysis, whereas
the TSS for PET6 was found N100 nt upstream to the TSS of our dataset.
SAGE tags generated from the most 3′ regions of PolyA+ RNAs con-
firmed 8 of the mapped polyadenylation sites for Sox4 NATs. Of these,
3 polyadenylation sites from the previous study [23] matched with
PET3. Other polyadenylation sites without any SAGE tags (beyond L6
in Fig. 1D) also matched (within ±100 nt) with the polyadenylation
sites for PET1 and PET6. We did not find any polyadenylation sites
from our 3′ RACE analysis that matched the polyadenylation sites of
PET2, PET4 and PET5. This result could be attributed to the primer
and/or probe used in our RACE experiments, which determine the
specificity or resolution of the analysis.

Next, we searched and mapped all the TATA box sequences, and 12
polyadenylation signal variants [56] across the antisense strand of the
Sox4 gene locus (Fig. 1E). Only six possible TATA boxes were found
with two containing a very conserved TATA box sequence, TATAAA
AAA. The TATA box was located upstream of the TSSs of Sox4 NATs
from our 5′ RACE analysis (between L1 and L3 in Fig. 1C) and PET2,
PET3 and PET4. On the other hand, polyadenylation signal sequences
were found in all the mapped polyadenylation sites of Sox4 NATs and
in all the PETs except for PET4 (N500 nt from polyA site) and PET5 (no
signal). The analysis shows that these Sox4 NATs utilised alternative
core promoter sequences and polyadenylation signals during transcrip-
tion initiation and polyadenylation, respectively.

http://www.atcc.org
http://rsb.info.nih.gov/ij
http://www.ensembl.org


Fig. 1. RACE-southern analysis of Sox4 antisense transcripts expressed in the E15.5 cerebral cortex. 5′ RACE for Sox4 antisense transcripts was independently carried out using the universal
primer for 5′ and each of the 7 gene specific primers designed across the Sox4 gene locus (A). Amplicons for each reaction were electrophoresed, blotted and specific Sox4 antisense
amplicons were detected using independent oligonucleotide probes designed downstream to each of the original primer used. Similar approach was performed for 3′ RACE analysis
(B). The oligonucleotide probes used for detection are given at the lower right corner of each gel photo and represented by a coloured arrow at the lower left corner. These colour
arrows denote all the corresponding amplicons in each gel and are schematically represented in figures (C) and (D) for both 5′ and 3′ RACE analyses, respectively. FANTOM Paired
Ends di-Tag (PET) sequences for Sox4 antisense transcripts, which were obtained from Ensembl website (www.ensembl.org) were mapped to the Sox4 gene locus (E). Previously
reported SAGE tags (Ling et al., 2009), selected TATA box and polyadenylation signal sequences were also mapped to the gene locus. Detail legend descriptions are provided in the
bottom panel of the figure.
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3.2. Sox4 sense and NATs form cytoplasmic dsRNA aggregates in brain cells

To determine whether Sox4 NATs are functional, we first evaluated
the cellular localisation of these transcripts in relation to sense
transcripts. First, we performed RNA FISH analysis using non-
overlapping RNA probes for both sense and antisense transcripts on
cells obtained from the adult cerebral cortex, hippocampus, olfactory
bulbs and cerebellum (Fig. 2; see Supplementary GenBank File in [50]

Image of Fig. 1
http://www.ensembl.org


Fig. 2. RNA FISH of Sox4 sense and NATs. RNA FISH of Sox4 sense and NATswas performed
on trypsinised cells obtained from different regions of the adult mouse brain. The type of
transcripts analysed is shown at the top of the figure and the origin of cells is shown to the
left of the micrographs. Scale bars = 5 μm.
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for probes information). The analysis showed cytoplasmic co-
localisation of sense and NATs as aggregates in 5–10% of cells assessed.
No sense and NATs aggregates or signals were found in the nucleus sug-
gesting Sox4 NATs are not playing a direct role in regulating Sox4 gene
transcription or chromatin modification. Next, we asked whether
NATs formed double stranded RNA with the sense transcript in the cy-
toplasm, an event that is important in RNA interference and translation
regulation. We performed RNA FISH on RNase A treated cells from the
same mouse brain regions (Fig. 2). Additional RNA FISH experiments
targeting the Hmbs housekeeping gene were performed as a control
for the RNase A digestion step (see Fig. 2 in [50]). Treatment of cells
with RNase A did not cause any change in RNA FISH, compared to
non-treated cells (Fig. 2). This is an indirect suggestion that Sox4 NATs
may interact with Sox4 sense transcripts and form dsRNA in the cyto-
plasm. The z-stacking analysis of these cells is provided inmovie file for-
mat (see Supplementary Movies in [50]).

3.3. Sox4 NATs did not affect the transcription or translation of Sox4 mRNA
in NIH/3T3 cells

To determine whether Sox4 NATs affect the translation of Sox4
protein, we overexpressed selected PET2 (3.216 kb), PET3 (1.919 kb),
PET5 (0.807 kb) and PET6 (1.824 kb)NATs inNIH/3T3 cells and assessed
the level of Sox4 protein expression. The selected PETs were mapped to
different regions of the Sox4 protein-coding (sense) transcript or gene
locus. In all experimental groups, expression of Sox4 transcripts was
not significantly different between pcDNA3-empty and mock controls
(Fig. 3A). PET2, PET3, PET5 and PET6 were overexpressed in NIH/3T3
cells at 21, 14, 29 and 376 times greater than the mock control, respec-
tively (Fig. 3A). In all the cells that overexpressed PETs, we did not
observed any significant changes in Sox4 sense transcript levels, except
for those cells that overexpressed PET2 and PET5,which exhibited about
2.5 and 1.8 times upregulation of the sense transcripts, respectively
(Fig. 3A). However, immunoblotting of protein lysates isolated from
these cells (n = 2) showed no significant changes in Sox4 expression
when compared to control, with 0.8-, 1.3-, 1.3-, 0.9- and 0.8-fold
changes in PET2-, PET3-, PET5-, PET6- and PcDNA3-transfected cells,
respectively (Fig. 3B; see Fig. 3 in [50]). Both RNA and protein analyses
suggest that the Sox4 NATs do not significantly affect the endogenous
level of Sox4mRNA and protein in the in vitromodel.

3.4. A novel small RNA, Sox4_sir3, originates from the Sox4 sense transcript

Long dsRNAs can serve as templates for the biogenesis of small
RNAs, which function via the RNA interference (RNAi) machinery.
To answer the question as to whether Sox4 sense and NATs dsRNA
generate functional small RNAs, we generated ~3.7 million small RNA
sequences (36 nt) from a mouse E15.5 whole brain using a massively
parallel sequencing platform, the Illumina Genome Analyzer II
(GSE22653) [53]. Based on the screening of these small RNA sequences,
we mapped 7 small RNA sequences with a unique hit to the Sox4 gene
locus where both sense and NATs were expressed (Fig. 4A; see Table 1
in [50]). Interestingly, all 7 small RNA sequences were mapped to the
Sox4 sense transcript and were encountered only once in the dataset
suggesting that they could be Sox4 sense transcript degradation by-
products.

To ascertain whether these small RNAs were Sox4 sense transcript
degradation by-products or otherwise, we performed stem loop RT-
PCR to evaluate the existence of these small RNAs in the E15.5 mouse
brain. The analysis showed only Sox4_sir3 small RNA (5′-TCAAGGAC
AG CGACAAGATT CCGT-3′; GenBank Accession: HM596744) was
specifically amplified, suggesting that this is the only genuine small
RNA (Fig. 4B). Next, we searched Sox4_sir3 in other high-throughput
mouse small RNA sequencing datasets available in the Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/). We screened 53 high-
throughput small RNA sequencing datasets generated from various
studies using Mus musculus as a model (Series records: GSE20384,
GSE19172, GSE17319, GSE7414, GSE5026 and GPL7059). Of these
datasets, we found Sox4_sir3 was sequenced in only 2 datasets,
GSM433295 and GSM475280, which were generated from E18.5
mouse testis small RNAs and Mili-immunoprecipitated adult mouse
testis small RNAs, respectively. By considering both laboratory-based
and in silico analyses of Sox4_sir3, we demonstrate that the Sox4 sense
transcript is the origin for the generation of Sox4_sir3 novel small

http://www.ncbi.nlm.nih.gov/geo/
Image of Fig. 2


Fig. 3. Overexpression study of PETs 2, 3, 5 and 6 using NIH 3T3 cells. Normalised log2 expression level of Sox4 sense and NATs in NIH 3T3 cells transfected with reagent only (control),
pcDNA3-empty vector (pcDNA3) and individual pcDNA3-PET construct is illustrated in (A) for Sox4 sense and antisense transcript expression. The western blot analysis based on the
antibody against Sox4 or actin protein is shown in (B). An additional lane containing the lysate from HeLa cells was included to serve as positive control. For (A), N = 3 per group and
asterisks denote significant level at **P b 0.01 and ***P b 0.001. Error bars denote the standard error of the mean. For (B), N = 2 per group.
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RNAs. However, the role of NATs and the mechanism involved in the
biogenesis of this small RNA remains unknown.

To determine whether Sox4_sir3 small RNA is a novel microRNA
(miRNA), we used 150 nt upstream and downstream of Sox4_sir3 to
look for a potential hairpin stem loop structure using the RNAfold
program [57]. Using default thermodynamic prediction parameters
[58] and based on the uniform miRNA annotation criteria [59], we
did not find any potent hairpin stem loop structures that may have
functioned as the Sox4_sir3 precursor (Fig. 4C). Therefore, we conclude
that Sox4_sir3 is not a miRNA.

Thus far, we have confirmed that both Sox4 sense andNATs can form
dsRNA in brain cells and Sox4_sir3 originates from the Sox4 gene locus,
where both sense and NATs are expressed. Since Sox4_sir3 is not a
miRNA, we speculated that this small RNA could be either an endoge-
nous small interfering RNA (endo-siRNA) or a piRNA that is generated
from a long dsRNA via a Dicer1-mediated mechanism. To prove our
hypothesis, we evaluated the expression of Sox4_sir3, Sox4 sense and
NATs in mouse embryonic stem (mES) cells with conditional alleles
for Dicer1 (Fig. 4D). The analysis showed approximately 32-fold
down-regulation of Sox4_sir3 in Dicer1 null mES cells, compared to
cells expressing Dicer1 (Fig. 4D). In addition, we observed no difference
in Sox4 sense transcripts and slight downregulation of NATs expression
levels between the two cell types, confirming that Sox4_sir3 biogenesis
is in fact Dicer1-dependent.

3.5. Sox4 NATs induced the biogenesis of Sox4_sir3 in NIH/3T3 cells

Next, we wanted to determine whether Sox4 NATs are required
for the biogenesis of Sox4_sir3. Sox4_sir3 is mapped to the coding se-
quence (CDS) of the Sox4 sense transcript, and PET6 is the NAT that
overlaps this region (see Fig. 4 in [50]). We transfected NIH/3T3
cells with PET6 and assessed the expression level of Sox4_sir3.
PET3, a Sox4 NAT that overlaps the 3'UTR of Sox4 sense transcript,
and pcDNA3-empty were transfected as controls. No significant dif-
ferences between Sox4 transcripts level between pcDNA3-empty
and blank controls were observed in all experimental groups.We ob-
served significant upregulation of both PET3 and PET6 (P b 0.001) in
the cells and these transcripts did not affect the level of Sox4 sense
transcripts supporting our findings in the previous transfection
analyses. Cells overexpressing PET6 showed approximately 63-fold
upregulation of Sox4_sir3 compared to the mock control (Fig. 5A).
However, we did not observe any significant difference in Sox4_sir3
expression between cells overexpressing the PET3, and the
pcDNA3-empty vector control (Fig. 5A). In addition, Dicer1

Image of Fig. 3


Fig. 4. Identification of Sox4_sir3 small RNA. (A)Mapping of small RNA sequences that were originated from the Sox4 gene locus. (B) Validation of small RNAs (S4_sir denotes Sox4_sir and
NTC denotes no template control) using stemloop RT-PCR method identified Sox4_sir3 as the only specific amplicon. (C) RNA fold prediction of sequences 150 nt upstream and
downstream of Sox4_sir3. The colour in the scale bar presented below to the predicted structure denotes the possibility of base-pairing between nucleotides. The minimum free energy
(MFE) structure, the thermodynamic ensemble of RNA structures (pf), the centroid structure (centroid) and the positional entropy for each position are presented in two separated
graphs to right of the predicted structure. (D) Normalised log2 expression of Sox4 sense transcripts, Sox4 NATs, Dicer1 and Sox4_sir3 in mouse embryonic stem (mES) cells with
conditional allele for Dicer1. Dicer c/− denotes mES cells with Dicer1 activity and Dicer−/− denotes mES cells without Dicer1 activity. For (D), N = 3 per group and asterisks denote
significant level at *P b 0.05, **P b 0.01 and ***P b 0.001. Error bars denote the standard error of the mean.
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expression was not significantly different between transfection
groups (Fig. 5B), confirming Sox4_sir3 biogenesis is inducible with
increased PET6 expression in NIH/3T3 cells (see Fig. 4 in [50]).

3.6. Full-length sequencing of PET6

In general, NATs are expressed in a specific cell type or in certain
developmental stages. Full-length sequencing of NATs has been difficult
due to their low expression level. To characterise the structure of the
PET6 NAT expressed in the brain, we performed full-length sequencing
of PET6 NAT isolated from transfected NIH/3T3 cells. We predicted
that the cloned PET6 would be expressed and subjected to post-
transcriptional processing similar to the naturally occurring PET6. We
perform RT-PCR using the primers initially used to amplify PET6 from
mouse gDNA. RT-PCR analysis showed amplification of two amplicons,
approximately 1.8 kb and 0.6 kb in size (see Supplementary GenBank
File and Fig. 4 in [50]). Full-length sequencing confirmed the smaller
amplicon as a 0.637 kb spliced transcript variant of PET6. The transcript
was spliced from +354 to +1545 (1.187 kb) at the canonical AG…GT
acceptor and donor site. A BLASTphomology search and protein domain
analysis using SimpleModular Architecture Research Tool (SMART) [60,
61] for open reading frames with greater than 100aa within both

Image of Fig. 4


Fig. 5. The effect of PET6 overexpression on Sox4_sir3 expression. (A) Normalised log2 expression of Sox4_sir3 small RNA in NIH 3T3 cells transfected with reagent only (mock control),
pcDNA3-empty vector (pcDNA3), pcDNA3-PET3 (PET3) and pcDNA3-PET6 (PET6) constructs. (B) Normalised log2 expression of theDicer1 transcript in all the NIH 3T3-transcfected cells.
N = 3 per group and asterisks dente significant level at ***P b 0.001. Error bars denote the standard error of the mean.
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transcript variants of PET6 did not show any significant protein homo-
logues or functional domains within these transcripts. Irrefutably,
these transcripts were not translated into peptides/proteins of known
function. These observations led us to askwhich transcripts are involved
in the generation of Sox4_sir3. To address this, we overexpressed both
spliced and unspliced PET6 variants in NIH/3T3 cells. We observed
upregulation of Sox4_sir3 only in cells overexpressing the unspliced
variant suggesting the overlapping portion of the transcript is required
for Sox4_sir3 production (see Figs. 5–6 in [50]). We suspected that
the spliced variant of PET6 was an in vitro artefact, due to the overex-
pression of PET6 transcript. In addition, we did not find any RT-qPCR
amplification of the spliced variant in various mouse tissues such as
brain, heart, spleen, pancreas and skeletal muscle using a pair of
intron-spanning primers (data not shown). The unspliced PET6
sequence was termed Sox4ot1 and was submitted to GenBank with
the accession number HM596742.
Fig. 6. LNA-ISH of Sox4_sir3 in whole mouse embryo and brain sections. LNA-ISH of Sox4_sir3w
embryos. For E17.5 developmental stage, only (D) coronal and (E–G) sagittal whole brain sec
‘bLV’ = budding liver, ‘CB’ = cerebellum, ‘CbAn’ = cerebellar anlage, ‘CC’ = cerebral cortex
olfactory bulb, ‘Hipp’ = hippocampus, ‘LG’ = lungs, ‘LI’ = layer I of the cerebral cortex, ‘LV
‘tel’ = telencephalon, ‘VZ’ = ventricular zone.
3.7. Expression pattern of Sox4_sir3

To investigate the potential role of Sox4_sir3 during brain develop-
ment, we performed in situ hybridisation (ISH) using a commercial
Locked-Nucleic Acid (LNA) probe on sections obtained from E11.5,
E13.5 and E15.5 whole mouse embryos, and E17.5 and P1.5 whole
brains (see Fig. 7 in [50] for LNA-ISH of scramble control). We observed
Sox4_sir3 expression in the telencephalon and mesencephalon of E11.5
and E13.5 mouse embryos (Fig. 6A-B). The expression was later
confined to the ventricular and marginal zones (known as layer I after
birth) of the cerebral cortex, ventricular zone, cerebellar anlarge and
the granule layer of the olfactory bulb at E15.5 and E17.5 (Fig. 6C–G).
At P1.5, Sox4_sir3 expressionwas observed in the diminishing ventricu-
lar zone of the cerebral cortex, subventricular zone of the lateral ventri-
cle, layer I of the cerebral cortex, pyramidal layer of the hippocampus,
granule cell layer of the dentate gyrus, granule layer of the olfactory
as performed onwhole embryo sections obtained from (A) E11.5, (B) E13.5 and (C) E15.5
tions were analysed whereas for (H–J) P1.5, sagittal whole brain sections were analysed.
, ‘DG’ = dentate gyrus, ‘GE’ = ganglionic eminence, ‘GrOB’ = granule cell layer of the
’ = liver, ‘mes’ = mesencephalon, ‘MZ’ = marginal zone, ‘SVZ’ = subventricular zone,
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Fig. 7. Stemloop RT-qPCR characterisation of Sox4_sir3 expression. The characterisation of
Sox4_sir3 expression was performed on (A) whole brains obtained from different
developmental stages, (B) different brain regions of adult mice and (C) different
adult mouse organs. Data were presented as normalised log2 expression (to Hmbs
housekeeping gene). For all analyses, N = 2 per sample was used except for the skin,
skeletal muscle, spleen and stomach, where N = 3. Error bars denote the standard error
of the mean.
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bulb and Purkinje cell layers of the cerebellum (Fig. 6H–J). Besides the
developing and postnatal brains, Sox4_sir3 was strongly expressed in
the developing liver between E11.5 and E15.5 (Fig. 6A–C), and the
developing lungs at E15.5 (Fig. 6C). These findings show that Sox4_sir3
is expressed mainly in germinative zones and specialised neuronal cell
layers in the brain as well as the developing lungs and liver suggesting
that this small RNA may have a regulatory role in the development or
function of these cells or organs, subjecting to further functional valida-
tion. Employing multiple mutated LNA probes to serve as negative
controls could improve the specificity of the current ISH analysis.

We also performed stemloop RT-qPCR to quantitatively analyse the
expression profile of Sox4_sir3 inwhole brains at different developmen-
tal stages, different adult brain regions and different organs of adult
mice (Fig. 7; see Supplementary Results in [50] for detail RT-qPCR anal-
ysis). We showed Sox4_sir3 expression in the whole brain decreases as
embryos developed from E11.5 to E17.5. At P1.5, we observed a sudden
surge of expression in thewhole brainwith about a 9-fold increase from
E17.5, which then decreased (~6-fold) through to the adult stage at
P150 (Fig. 7A). When we analysed different brain regions of adult
mice, Sox4_sir3 expression was lower in the cerebellum compared to
other brain regions (Fig. 7B). When we compared the adult whole
brain at P150 with other adult organs, we observed significantly higher
Sox4_sir3 expression in the heart, kidney and pancreas (Fig. 7C). Inter-
estingly, Sox4_sir3 that was found highly expressed in the liver during
embryonic development was least expressed among the adult organs
screened suggesting that Sox4_sir3 may have more important role in
embryonic as compared to adult liver development/function.

4. Discussion

In this study,we characterised a cluster of NATs that overlap the Sox4
sense transcript and described a mechanism related to the ability of
these transcripts to form dsRNAs. These dsRNAs served as templates
for the production of a novel small RNA, Sox4_sir3, via a Dicer1-
mediated mechanism in the mouse. However, we are unable to classify
Sox4_sir3 neither as an endogenous small interferingRNA (endo-siRNA)
nor a piRNA. Majority of endo-siRNAs are 21–22 nt in size whereas
piRNAs are typically 24–32 nt long [40]. Sox4_sir3 is 24 nt and this
size is not exclusive for either endo-siRNA or piRNA category. However,
Sox4_sir3 has a 5′ uridine bias, which is a property of piRNAs [62]. The
fact that the Sox4_sir3 sequence was found to match to those in
Mili-immunoprecipitated adult mouse testis small RNAs suggests that
this small RNA is very likely to be a piRNA. Although piRNAs have
been demonstrated as germline specific small RNAs, recent studies
have suggested that they also play a role in nongonadal cells such as
mouse hippocampus and neuronal cells in Aplysia [63,64]. Taken into
consideration of its size, 5′ biased to uridine and comparative in silico
analysis results, we suggest that Sox4_sir3 is potentially a novel piRNA
in the central nervous system. Further investigation based on Ago2- or
Mili-immunoprecipitated brain samples is required to confirm the
type of small RNA for Sox4_sir3.

Biogenesis of small RNAs from dsRNAs is common in viruses and
plants where RNA-dependent RNA polymerase (RdRP) plays a pivotal
role in catalysing the RNA replication process [65,66]. In mammals,
where no RdRP activity has been reported, the mechanism responsible
for the generation of dsRNAs remains unclear. In the absence of RdRP,
the formation of mammalian dsRNAs have been proposed to ensue
via other means such as pairing of partially or fully overlapping sense
and NATs. The generation of functional small RNAs from dsRNAs in
mammals is rare. To date, only limited numbers of small RNAs have
been reported as derived from naturally occurring long dsRNAs or
retrotransposons found in cultured human cells and murine germ cells
during gonadal development [38,67,68]. The present study has demon-
strated that Sox4ot1 induced the overexpression of Sox4_sir3, which its
functional role is yet to be determined in themouse or humanbrain. The
direct interaction of Sox4ot1 and Sox4 sense transcripts in the in vitro
system should be evaluated to confirm the proposed biogenesis mecha-
nism of Sox4_sir3. Sox4 sense and NATs were found co-localised in the
cytoplasm of brain cells. The observation, however, did not discount
the possibility that the transcripts may bind to proteins and protect
them from RNAse A digestion. Additional treatment analysis based
on RNAse III digestion will add evidence of the presence of a dsRNA
complex between Sox4 sense and NATs transcripts in situ.

Image of Fig. 7
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Unlike other well-characterised NATs such as Air, HOTAIR, Evf-2,
Kcnq1ot1 and NRON [12–15,69], Sox4 NATs were found to form aggre-
gates with its sense counterparts within the cytoplasm, instead of
localised within the nucleus. In various incidences, sense-NATs forma-
tion in the cytoplasm can inhibit protein translation such as NOS2A in
molluscs [70] and FGF-2 in human [71]. In the central nervous system,
sense-NATs pairs or NATs alone have been described in the cytoplasm
or synaptoneurosomes of neuronal cells with specialised function
[63,72,73]. It has been suggested that NATs could exert post-
transcriptional regulation on sense transcripts in the brain [74,75]. In
another report, cytoplasmic expression of BACE1 NATs in brain samples
from Alzheimer's disease patients has been shown to stabilise the sense
transcript by masking the miR-485-5p binding site thus preventing
miRNA-induced translational repression [73]. However, the functional
role of these NATs in the development or function of neuronal cells
has not been conclusively proven. Unlike NATs overlapping NOS2A,
FGF-2 and BACE1, overexpression of Sox4 NATs in vitro did not signifi-
cantly affect the Sox4 protein levels but gave rise to Sox4_sir3 (via
PET6), which its origin was mapped to sense transcript. The low copy
number of Sox4_sir3 in our sequencing dataset is not an uncommon
phenomenon. A total of 23 known miRNAs were also found to have a
single read count in the dataset [53], suggesting that low copy number
sequences including Sox4_sir3 may not necessarily non-functional.
Overexpression analyses performed on the NIH/3T3 cell line in the
present study were limited to the evaluation of endogenous Sox4 tran-
script or protein expression levels within the cells. Additional functional
characterisation of NATs in vivo is required to conclude the effect of Sox4
NATs especially the Sox4ot1 on Sox4 mRNA/protein expression within
the brain.

Expression of Sox4_sir3 is spatiotemporally regulated during
embryogenesis between E11.5 and E17.5. In E11.5 embryos, Sox4_sir3
expressionwas specific to the liver bud and the telencephalon. Between
E11.5 and E15.5, the developing liver bud is a major site for foetal
haematopoiesis. During these stages of development, haematopoietic
stem cells (HSCs) increased exponentially in the foetal liver [76,77]
followed by mobilisation of HSCs to spleen and bone marrow after
E16 [77]. Although Sox4_sir3 expression was very specific to the liver,
its role in liver development or foetal haematopoiesis remains unclear
and requires further experimental validation.

Temporal analysis of the wholemouse brain showed a sudden surge
of Sox4_sir3 expression at the P1.5 developmental stage. In rodent,
gliogenesis is at peak right afterbirth [78]. Increased expression of
Sox4_sir3 at P1.5 mainly in the subventricular/ventricular zones may
be associated with active gliogenesis activities at the region. The
Sox4_sir3 expression was also found specifically in the marginal zone
and layer I of the embryonic and postnatal mouse cerebral cortices,
respectively. Interestingly, these regions are predominated by Cajal–
Retzius neurones that secrete Reelin, a protein involved in establishing
early neuronal circuitry, cortical lamination and cortical evolution [79,
80]. Therefore, the role of Sox4_sir3 in the development and function
of Cajal–Retzius neurones should be further evaluated.

We have demonstrated that the overexpression of selected Sox4
NATs did not exert significant changes to Sox4 transcripts or protein
levels in NIH/3T3 cell line but a novel Sox4 NAT, Sox4ot1, may induce
the production of a piRNA-like small RNA, Sox4_sir3 in the mammalian
cell system. Based on our observations in RNA FISH and LNA ISH exper-
iments, we propose that the mechanism of Sox4_sir3 biogenesis in the
NIH/3T3 artificial model involves the formation of dsRNA between
Sox4 sense and Sox4ot1 followed by Dicer1 dependent production of
Sox4_sir3. Our study, however, would be better enhanced with further
functional characterisation of Sox4ot1 and Sox4_sir3 using primary
neuronal or glial cells to deduce the role of both NAT and small RNA
throughout neurodevelopment. In addition, Sox4_sir3 may involve in
mechanisms that are not associated with Sox4 protein function and
therefore the role of the small RNA should be investigated fromdifferent
perspectives. Our preliminary findings, when further proven or
characterised in vivo, will have significant implications on our under-
standing of NATs role in small RNAs biogenesis. About 20% of well-
defined proteins have at least one overlapping transcript [81], thus
interactions of these sense-antisense RNA pairsmay contribute to unor-
thodox production of small RNAs that function as secondary regulatory
RNAs, hence explaining the missing link and the wide-spectrum of
transcript-protein relationship in various complex processes involved
in organismal development.
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