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Abstract 

The detection of cytokines in body fluids, cells, tissues and organisms continues to 

attract considerable attention due to the importance of these key cell signalling 

molecules in biology and medicine. In this review, we describe recent advances in 

cytokine detection in the course of ongoing pursuit of new analytical approaches for 

these trace analytes with specific focus on immunosensing. We discuss recent elegant 

designs of sensing interface with improved performance with respect to sensitivity, 

selectivity, stability, simplicity, and the absence of sample matrix effects. Various 

immunosensing approaches based on multifunctional nanomaterials open novel 

opportunities for ultrasensitive detection of cytokines in body fluids in vitro and in 

vivo. Methodologies such as suspension arrays also known as bead assays together 
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with optical fibre-based sensors, on their own or in combination with microfluidic 

devices will continue to have an important role to address the grand challenge of 

real-time in vivo multiplex cytokine detection. 

Keywords: Cytokines; Immunosensing; Sensitivity; Real-time detection; 

Microfluidics; Review 

 

1. Introduction 

Cytokines, low molecular weight (~ 6-70 kDa) soluble proteins secreted from the 

immune and non-immune cells are core indicators of the functional status of the body, 

and strongly associated with the immune system including the modulation of immune 

reactions such as sensitization.(Stenken and Poschenrieder 2015) Cytokines also play 

critical roles in chemically-induced tissue damage repair, in cancer development and 

progression, in the control of cell replication and apoptosis and in many other aspects 

of physiology. Consequently, monitoring cell functions and cell-to-cell 

communication by using their cytokine secretions has enormous value in biology and 

medicine.(O'Shea et al. 2011) The effects of cytokines are very potent as they engage 

various downstream amplification processes. As a result, only a few cytokine 

molecules may be sufficient to induce a significant cellular response.(Xue et al. 2015)  

 

Cytokines are classified into lymphokines (cytokines made by lymphocytes), 

monokines (cytokines made by monocytes), chemokines (cytokines with chemotactic 

activities), and interleukins (cytokines made by one leukocyte and acting on other 

leukocytes).(Nicola 1994) Based on effects of cytokines in the context of an 

inflammatory disease, they can also be divided into inflammatory or 

anti-inflammatory,(Wojdasiewicz et al. 2014) and produced both with and without 

stimuli such as lipopolysaccharide.(Zhao et al. 2011) Cytokines may act on the cells 

that secrete them (autocrine action), on nearby cells (paracrine action), or in some 

instances on distant cells (endocrine action). Cytokines can also act addictively, 

synergistically or antagonistically, and induce one another.(Whicher and Evans 1990)  
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Cytokine detection and measurement is important as elevated concentrations of 

cytokines may indicate the activation of cytokine signaling pathways associated with 

inflammation or disease progression. Consequently, these proteins are widely used as 

biomarkers to characterize the immune function, understand and predict disease, and 

monitor effects of treatment.(Catalfamo et al. 2012)  Measurement sensitivity is 

always an issue for cytokines because they are released into the extracellular milieu 

resulting in pM concentration range.(Schenk et al. 2001) In addition to low 

concentrations, it is difficult to measure physiological concentrations of cytokines 

accurately and reproducibly due to some challenges (Figure 1) such as significant 

interference from heterophilic antibodies,(Bolstad et al. 2013) the rheumatoid 

factors,(Bartels et al. 2011) and specific or non-specific cytokine binding 

proteins,(Whicher and Evans 1990) and an extremely dynamic, transient cytokine 

secretion process.(Kulbe et al. 2012) 

 

 

Figure 1 The scheme showing challenges, requirements and strategies for cytokine 

detection. The challenges include complicated cytokine network, large number of 

different cytokines, low concentration of cytokines, and rapid dynamics of cytokine 

expression. Correspondingly, cytokine detection methods requires multiplex 
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capability, enhancement in selectivity and sensitivity, and real time measurement. The 

strategies to address these challenges are proposed to be application of sensor arrays, 

monoclonal antibodies, nanomaterials, multifluidic system, and et al. 

 

The most common approach for cytokine quantification is based on the idea of an 

immunoassay. Specific techniques include traditional ELISA assays,(Chiswick et al. 

2012) enzyme-linked immunosorbent spot (ELIspot) assays,(Cox et al. 2006) 

antibody array assays(Schröder et al. 2010) and bead-based assays(Won et al. 2012). 

Traditional ELISA assays are reliable, but they are not rapid (6 h) and usually require 

a relatively large sample volume (100 µL). Generally speaking, all these assays 

require a long sample preparation time (> 6 h), and multiplexed approaches require a 

high level of complexity in the sample labeling. Some assay types require specialized 

flow cytometry infrastructure, and all are unable to monitor the cytokines in real time 

or in a dynamic manner. These limitations are the driving force for researchers to 

develop sensitive, selective, and rapid real time cytokine analysis platforms for 

comprehensive characterization and quantitative analysis of cytokines released in both 

healthy and pathological conditions. 

The purpose of this review is to discuss recent advances in development of analytical 

approaches especially immunosensors for cytokine detection focusing on designing 

sensing interfaces to achieve high sensitivity, selectivity, stability, simplicity, and no 

sample matrix effects. This work is not intended to be a comprehensive review on 

cytokine detection, as several excellent reviews of analytical methods for 

measurement of cytokine proteins have been recently published.(Chikkaveeraiah et al. 

2012; Rusling et al. 2010; Stenken and Poschenrieder 2015) Rather, we will examine 

the latest trends in cytokine detection based on immunosensing.  

 

2. Principles of immunosensors 

Immunosensors are immunoreaction-based affinity biosensors, which use 

http://www.biocompare.com/ProductCategories/258/ELISA-Kits.html
http://www.biocompare.com/ProductCategories/677/ELISPOT.html
http://www.biocompare.com/ProductCategories/2299/Antibody-Microarrays-Antibody-Arrays.html?sap=true
http://www.biocompare.com/ProductCategories/2999/Microspheres-And-Assay-Kits.html
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immuno-compounds as biological receptors. They usually integrate an immunoassay 

and a directly associated transducer in a single device (Figure 2). This device contains 

two essential components: biorecognition domain and signal transduction. The 

biorecognition domain should be a biological entity such as antibodies, peptides, 

proteins, or even whole cells. The integration of recognition elements (such as 

antibodies and antigens) with a signal transduction usually achieved by modifying the 

transducer surface with a chemical layer that enables sensitive and selective 

immobilization of recognition species.(Liu et al. 2012a) Thus, ideally, this 

biorecoginition domain should have high affinity (low detection limit), high 

specificity and selectivity (low interference), wide dynamic range, fast response time, 

long shelf life, and good generality for detecting a broad range of analytes with the 

same class of surface fabrication. Signal transduction elements are responsible for 

converting molecular recognition events into physically detectable signals such as 

fluorescence, colour, electrochemical signals, acoustic, or surface plasmon resonance 

changes. 
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Figure 2 The general scheme of an immunosensor which includes matrix sample, 

biorecognition domain and signal transduction. Four important signal transduction 

approaches are schemed for cytokine detection, such as fluorescence 

immunosensirng, electrochemical immunosensing, surface plasmon resonance (SPR) 

based and microring resonator based immunosensing. 

The interaction of an antibody (Ab) with an antigen (Ag) forms the basis of 

immunosensors, which defines both specificity and detection limit of an 

immunosensor.(Mehrvar et al. 2000) The Ab-Ag interaction is characterized with an 

association and a dissociation reaction rate constant, ka and kd respectively. 

Ab Ab-AgAg+
ka

kd  

The ultimate detection limit of an immunoassay is determined by the antibody-antigen 

binding constant.(Moal and Bates 2012) The greater the binding constant of the 

antibody, the lower detection limit can be achieved. The affinity constant KA, which 

varies in strength from 104 to 1015 M-1 (typically of the order of 108 to 1012 M-1) 

depending on the nature of antigens and binding affinity of the corresponding 

antibodies,(Lee et al. 2014) can be described by:  

]][[

][

AgAb

AgAb

k

k

d

a

AK


  

Where [Ab], [Ag] and [Ab-Ag] are molar concentrations of antibody, antigen and 

antibody-antigen complex in solution, respectively. The transduction of such antibody 

and antigen biorecognition events either requires labels, commonly used in a myriad 

of immunoassay formats, or a method which can directly detect the change that occurs 

at the sensing interface. Most immunosensor devices reported to date perform indirect 

measurements by using labels such as enzymes,(Malhotra et al. 2012) fluorescent 

(Zhao et al. 2011) and chemiluminescent(Sardesai et al. 2013) probes that convert 
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affinity signal into a measurable response. Although indirect immunosensors are 

highly sensitive due to analytical characteristics of the label applied, the non-specific 

binding is a continuing problem.(Huang et al. 2015a) Therefore special methodologies 

to resist non-specific protein adsorption are critically required for sensing analytes in 

a complex matrix sample, such as blood or urine. Consequently, despite decades of 

effort it is still challenging to design a sensing interface with properties of high 

sensitivity, high selectivity, high stability, simplicity, and no matrix sample effect. 

The desire to have all of these properties simultaneously present at the same sensing 

interface drives research as well as commercial developments. 

3. Immunosensors for cytokine detection 

Given that cytokines are universal biomarkers implicated in the functioning of 

immune and other physiological processes, it is not surprising that cytokine detection 

is one of the hottest topics in immunosensing. However, publications reporting 

immunosensors for cytokine detection are limited due to some analytical challenges 

with cytokine detection (Figure 1). Table S1 lists representative immunosensors for 

cytokine detection based on different signalling strategies such as fluorescence 

immunoassay (FI), surface plasmon resonance detection (SPR), electrochemical-based 

methods (EC), silicon photonic micro-ring resonators (MR) and other methods. This 

section aims to generally describe the advantages and limitations with respect to each 

signal detection strategy, and a more detailed discussion of each of these different 

signalling strategies is reported elsewhere.(Stenken and Poschenrieder 2015)  

3.1 Fluorescence based immunsensing 

The fluorescence immunoassay (FI) is a method which monitors Ab-Ag binding based 

on changes in fluorescence signal (Figure 2), and recent publications outlining the 

principle of FI are summarized.(Wu et al. 2011) It represents the most widely studied 

methodology for cytokine detection due to its high sensitivity. In addition, fluorescent 

methods are simple, diverse and non-destructive, and can be integrated into 



8 
 

microfluidic devices for cytokine monitoring in real time.(Zhao et al. 2011) The wide 

abundance of different fluorescent labels makes FI technology capable of multiplexing. 

However, photobleaching of fluorescent dye labels and spectral overlap of reporter 

dyes may limit the degree of multiplexing, while luminescent background of sample 

matrix can interfere with the measurement and/or interpretation of results.(Campos et 

al. 2011) The detection limit of fluorescence based immunosensing ranges from fg 

mL-1 to ng mL-1, so it is generally sufficient for many cytokines in physiological 

conditions.  

3.2 Surface plasmon resonance based immunsensing 

SPR is an important tool to monitor interactions between biomolecules.(Mayer and 

Hafner 2011) Changes of the refractive index after Ab-Ag biorecognition can be 

probed by exploiting special properties of electromagnetic waves at the metal surface 

(surface plasmons). Thus the interaction between analyte and a biospecific element on 

metal surface can be monitored by SPR biosensor without the use of extrinsic labels 

(Figure 2). SPR has wide applications on sensing and recent publications outlining the 

principle of SPR are summarized.(Guo 2012) SPR-based immunosensors for cytokine 

detection are attractive due to high sensitivity (~2 pg mL-1)(Jeong et al. 2013) and the 

absence of labels. However, a common challenge with SPR-based sensors is the issue 

of overcoming signals produced via non-specific binding events on the sensor.  

3.3 Electrochemical based immunsensing 

Electrochemical methods (EC) have been used for protein detection by immunoassays 

for quite some time.(Luo and Davis 2013) In this approach, the Ab-Ag 

bioreconginition is probed based on the electrochemical signal from redox probes 

labelled on detection antibody (Figure 2). The primary advantages of electrochemical 

methods are inexpensive equipment and high sensitivity particularly in amperometric 

based measurements. More recent applications of electrochemiluminescence have 

incorporated various nano-based or chip-based strategies with high sensitivity (10 fg 

mL-1).(Sardesai et al. 2011) From Table S1 we can see electrochemical assays achieve 
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comparable detection limit to FL but with shorter analysis time. The scope of using EC 

for multiplexing is limited due to limited availability of redox probes for reporting the 

electrochemical signal.  

3.4 Microring resonator based immunsensing and other approaches  

MR represent a promising sensing platform (Figure 2) for real-time, label-free and 

multiplex detection of biomolecules due to their resonantly-enhanced sensitivity 

toward surface binding events between a target and antibody-modified 

micro-rings.(Washburn and Bailey 2011) Recent publications outlining the principle of 

MR sensors are summarized.(Amiri et al. 2015) The light coupled into the resonator via 

a waveguide is confined within the micro-ring cavity due to total internal reflections 

and high-Q resonant modes (Q~12000) are formed. Positions of these modes depend on 

the effective index of the resonant structure and thus get shifted when there is Ab-Ag 

interaction on the surface. This shift can be determined with high precision using the 

method of optical detection.(Qu et al. 2011) This is critical for field-based analytics 

and point-of-care diagnosis. For example, a silicon photonic micro-ring resonator was 

adopted for simultaneous detection of cytokines IL-2, IL-4, IL-5, and TNF-α with 

high accuracy in serum-containing cell media within only 5 min. (Luchansky and 

Bailey 2011) This report demonstrated that MR based sensing platforms have huge 

potential for multiplexed cytokine monitoring in complex immunological studies 

(Kindt and Bailey 2013) This approach also opened the possibility of performing 

real-time cells secretion measurements on single cells. Other new sensing platforms, 

such as, microarrays interferometric reflectance imaging sensors (IRIS)(Ahn et al. 2013) 

and arrayed imaging reflectometry (AIR)(Carter et al. 2011) are recently developed for 

cytokine detection with acceptable sensitivity (less than 10 pg mL-1).  

 

All these reported approaches aim to address one or more of detection challenges 

associated with cytokine detection: sensitivity (~10 pg mL-1 or better), selectivity, 

multiplexing, and real-time detection. Achieving high stability, simplicity, shorter 
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detection time and reduced sample volume are also driving the development of new 

cytokine immunosensing methods. The following sections are going to summarize 

strategies reported in literatures to meet the challenges of cytokine analysis including 

sensitivity, selectivity improvement, multiplex measurement, and real-time sensing. 

4. Strategies for improving selectivity 

4.1 Using monoclonal antibodies as the recognition reagent 

Immunoassays are attractive for the detection of proteins due to their high specificity 

by introducing monoclonal antibodies. Two types of antibodies (capture antibody and 

detection antibody) are normally used in sandwich immunosensors (Figure 2). It is 

preferable to use monoclonal antibodies as capture antibodies since they provide high 

selectivity to analyte.(Zhang et al. 2012a) Although not all cytokines have 

commercially available monoclonal antibodies, monoclonal antibodies are used 

whenever possible, with the majority of immunosensors for cytokine detection. To 

transduce such biorecognition events either requires labels or a transduction method 

(such as SPR or MR) which can detect the change that occurs at the sensing interface. 

Thus detection antibodies are normally labeled with probes such as fluorescent 

molecules or particles, redox probes,(Bettazzi et al. 2013) or mass tags.(Ahn et al. 

2013)  

4.2 Using aptamers as recognition reagents 

Aptamers are single strands of either DNA or RNA oligonucleotides that can be used 

to bind different analytes with higher selectivity and affinity than antibodies, and they 

are typically produced by selection from large combinatorial libraries.(Yüce et al. 

2015) Using aptamers as recognition reagents in biosensors has been reviewed in 

references.(Deng et al. 2014; Iliuk et al. 2011; Kim et al. 2016) The current active 

research on aptamers as alternative molecular recognition agents and possible 

substitutes for antibodies, has further widened the application of immunosensing in 

chemical analysis.(Famulok and Mayer 2011) In particular, aptamers can be readily 

site-specifically modified during chemical or enzymatic synthesis to incorporate 
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particular reporters, linkers, or other moieties. Also, aptamer secondary structures can 

be engineered to undergo analyte-dependent conformational changes, which opens up 

a wealth of possible signal transduction schemes, irrespective of whether the detection 

modality is optical, electrochemical, or mass based. Another advantage of using 

aptamers for specific target capture is their higher stability compared to antibodies. 

Consequently they can be used in harsh protein denaturing conditions.(Famulok and 

Mayer 2011) The vast majority of aptamer applications include simply using an 

aptamer as a substitute for an antibody. Despite active interest in these potential 

antibody substitutes, the number of aptamers that bind different cytokines is 

limited.(Orava et al. 2012) To our knowledge, in the field of cytokine detection only 

aptamers against IFN-γ, PDGF, VEGF, IL-6, IL-32, IL-17, and TNF-α have been 

reported in literatures. Revzin’s group has published several papers focusing on IFN-γ 

detection based on aptamer immunosensors.(Liu et al. 2012c; Liu et al. 2015; Liu et al. 

2011; Tuleuova et al. 2010) The sensitive and specific aptamer immunosensors for 

PDGF detection have been developed by combining aptamers with 

nanomaterials.(Wang et al. 2015; Wang et al. 2012a; Zhang et al. 2015) In one of 

such reports the hairpin aptamer probes have been immobilized on a gold electrode 

through self-assembly.(Zhang et al. 2012b) In this design, the presence of IFN-γ opens 

the hairpin structure. With subsequent addition of hemin, the hemin/G-quadruplex 

peroxidase-mimicking DNAzyme is formed, which catalyzes the electro-reduction of 

H2O2 and amplifies the current response for IFN-γ detection at the sub-nanomolar 

level. This aptasensor shows high selectivity towards the target analyte by 

incorporating a specific DNAzyme sequence into the hairpin aptamer probe. Hence, 

aptamers are becoming widespread in analytical applications not only as alternatives 

to antibodies, but as unique reagents in their own right. More examples on hairpin 

aptamer probes for both selectivity and sensitivity improvement will be discussed in 

section 5.4. 

4.3 Prevention of non-specific protein binding  

Modification of sensing interfaces with molecules being able to resist non-specific 

javascript:popupOBO('CMO:0001305','C2AN15962G')
http://www.chemspider.com/Chemical-Structure.401223.html
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adsorption is another efficient way to improve sensitivity and selectivity of the 

immunosensing system.(Zhang et al. 2013) Nonspecific adsorption of proteins is 

generally minimized by masking surfaces with blocking agents such as bovine serum 

albumin (BSA). However, for a complex biological sample such as serum, which 

contains numerous proteins of different types, BSA blocking solution might not be 

sufficient. Recently zwitterionic polymers have demonstrated high resistance to 

non-specific protein adsorption in biological applications.(Schlenoff 2014) Gooding’s 

group reported that zwitterionic phenyl layers have the anti-biofouling properties.(Gui 

et al. 2013) A hydrophilic layer such as poly(ethylene glycol) molecules (PEG) has 

also been explored to manage non-specific binding.(Liu et al. 2014a) Revzin and 

coworkers have been using modified PEG layers to improve the performance of 

aptamer immunosensors for cytokine detection.(Liu et al. 2011) PEG hydrogel has 

also been used to modify glass slide to resist the non-specific protein adsorption.(Seo 

et al. 2011) The application of polymer brushes in biomedical fields for resisting 

non-specific protein adsorption has been reviewed.(Krishnamoorthy et al. 2014) 

Hucknall and coworkers have designed a simple antibody microarrays on nonfouling 

poly(oligo(ethylene glycol) methacrylate) polymer (POEGMA) brushes (Figure 3) 

with femtomolar sensitivity for cytokines in serum and blood.(Hucknall et al. 2009) 

The nonfouling polymer brushes can efficiently resist protein adsorption from 

solution, and eliminate background non-specific signals in microarrays and lead to 

detection limits as low as 100 fg mL-1 (5 fM) in serum and 15 fM in whole blood. It is 

critically important to introduce molecules to sensing interface which can resist 

non-specific protein adsorption as the low detection limit depends on it. However, the 

problem of resisting non-specific protein adsorption has not yet been fully resolved. 

The management of non-specific binding remains one of the core challenges in 

cytokine analysis, and exploring reliable approaches to control non-specific protein 

adsorption needs further research. 
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Figure 3 Synthesis of POEGMA brushes on glass via surface-initiated atom-transfer 

radical polymerization for management of non-specific binding. Reprinted with the 

permission.(Hucknall et al. 2009)  

5. Strategies for improving sensitivity 

Numerous strategies attempt to achieve sensitivity improvement through signal 

amplification, including nanomaterial-based approaches,(Lei and Ju 2012) 

DNA-labeling techniques,(Hocek and Fojta 2011) electrochemiluminescence,(Chen et 

al. 2012) and in situ hybridization methods.(Urbanek et al. 2015) Here we only focus 

on techniques for improving sensitivity of cytokine detection based on signal 

amplification taking place on sensing interfaces.  

5.1 Amplified transduction with nanomaterials 

Generally, immunoreagents (such as antibodies) are immobilized on a transducer 

while the analyte (antigen) is measured through a label conjugated with one of the 

immunoreagents.(Pei et al. 2013) Nanomaterial-based fluorescent, luminescent, 

refractive index, light scattering and/or colorimetric labels have been integrated into 

analytical chemistry and used by large number of novel sensing techniques.(Scida et 

al. 2011; Shen et al. 2014) Nanomaterial-based sensing platforms can provide 
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advantages over traditional approaches in terms of sensitivity, stability, and capability 

for multiplexing and real time detection.(Chen and Chatterjee 2013) Importantly, 

nanomaterials can be functionalised to improve their ability to bind in a designated 

location, such as the surface of a cytokine secreting cell and signal the presence of 

proteins. They can be coated with antibodies, antigens, aptamers, enzymes specific to 

a protein, or receptors overexpressed on cell surface, or specific to cancer biomarkers. 

These nanomaterials can accommodate a large number of such targeting moieties due 

to high area-to-volume ratio, which makes nanomaterials attractive in biosensors.  

 

For example, zinc oxide nanorod platform was reported for ultrasensitive fluorescence 

detection of IL-18 and TNF-α with the sensitivity of sub fg mL-1.(Adalsteinsson et al. 

2008) A gold nanoparticle (AuNP) based SPR immunosensor combined with a fluidic 

platform was developed for detection of TNF-α.(Oh et al. 2014) This cytokine 

secretion assay was sensitive enough to quantify intercellular-signaling proteins 

secreted by blood immune cells in 4-5 h which is 3 times shorter than in the 

traditional ELISA method. Surface Enhanced Raman Spectroscopy (SERS) based 

AuNP sensing platform has been developed for fast, wash-free, and multiplexed 

quantification of three cytokines, INF-γ, IL-2, and TNF-α, with the detection limit of 

0.5 pM, 1.5 pM, and 0.3 pM, respectively.(Wang et al. 2013) By combination of the 

advantages of AuNP loaded graphene nanosheets, quantum dot based amplification, 

and heated electrode measurement, Zhang et al have proposed an ultrasensitive for the 

detection of IL-6 with detection limit of 0.5 pg mL-1.(Zhang et al. 2011) In addition, 

AuNPs uniformly assembled on the surface of poly (styrene-acrylic acid) nanospheres 

have been also reported as a tool for detection of TNF-α with high sensitivity (0.01 ng 

mL-1), stability and reproducibility.(Yin et al. 2011) Aptamer conjugated gold 

nanorods were used in a dual role as a label and a substrate to conjugate antibodies for 

a multiplex serum cytokine immunoassay detected by localized SPR in a microfluidic 

system.(Chen et al. 2015) The key achievement in this study is simultaneous detection 

of multiple analytes (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ) with high sensitivity 
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(5-20 pg mL-1) from a 1 μL serum sample within 40 min.  

 

Huang and coworkers have developed single molecule nanoparticle optical biosensors 

(SMNOBS) based on silver nanoparticles (2.6 ± 1.1 nm),(Huang et al. 2008) which 

were used for sensing and imaging of single TNF-α molecule. Once a single TNF-α 

molecule bound to a single monoclonal antibody molecule on single nanoparticle, the 

localized SPR of SMNOBS exhibited a large red shift of peak wavelength. These 

authors reported a dynamic range of at least 0-200 ng mL-1 TNF-α. A graphene 

oxide-based amperometric sensor was reported for a highly-sensitive detection of IL-6 

with the detection limit of 4.7 pg mL-1.(Huang et al. 2013a) An 

electrochemiluminescent immunosensor based on carbon nanotubes has been 

developed for detection of IL-6 in serum with detection limit of 0.25 pg mL-1 (Figure 

4).(Sardesai et al. 2011) In this work carbon nanotubes were conjugated with the 

capture antibodies and the reporter silica nanoparticles with detection antibodies. An 

electrochemical immunosensor for measuring IL-6 in serum based on single wall 

nanotube forests and 5 nm glutathione-protected AuNPs were also developed.(Munge 

et al. 2009) Their analytical performance was approaching the physiological range for 

IL-6 (< 6 pg mL−1) with detection limit of 10 pg mL−1.   

 

 

Figure 4 Design of microfluidic ECL array. Reprinted with permission.(Sardesai et al. 

2011) 

Another ultrasensitive immunoassay based on QDs-polymer functionalized silica 
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nanoparticle labels was developed for TNF-α measurement. (Yuan et al. 2011) Both 

electrochemical and electrochemiluminescence measurements can be used to quantify 

TNF-α with detection limit of 3 pg mL-1 and 7 pg mL-1, respectively. The increased 

sensitivity of TNF-α was achieved by an increase of CdTe QD loading per 

immunoassay event due to a large number of surface functional epoxy groups on 

polymers. In addition to increase the loading number of capture antibodies, the 

application of specially designed nanomaterials on the electrochemical sensing 

interface can greatly increase electron transfer rate between biomolecules and 

transducer resulting in increased sensitivity.(Liu et al. 2014b) An ultrasensitive 

electrochemical microfluidic array optimized to measure a four-protein panel of 

cytokines (IL-6, IL-8, VEGF and VEGF-C) with detection limits in the 5-50 fg mL-1 

range was developed by Rusling’s group.(Malhotra et al. 2012) The sensitivity was 

improved by using off-line protein capture by magnetic beads carrying 400,000 

horseradish-peroxidase enzyme labels and ∼100,000 antibodies. For enhancing the 

sensitivity, a strategy for detection of IL-2 which relies on silicon photonic microring 

resonator was reported by Bailey and coworkers.(Luchansky and Bailey 2011) In this 

study the signal arising from the initial binding event was amplified by employing a 

much larger secondary antibody due to significant change in mass, hence refractive 

index affecting resonance conditions.  

 

These examples above show enormous scope of nanomaterials offering for 

immunosensing of cytokines in regards to signal amplification. There is a similar 

scope to covalently attach multifunctional components (biomolecules and anti-fouling 

molecules) onto nanomaterials without steric hindrance and exploitation of these ideas 

for cytokine detection is likely to lead to further advances in sensitivity. 

5.2 Microsphere‐based amplified transduction 

In addition to nanomaterials, functionalized magnetic particles have been commonly 

used for purposes such as manipulation of cells, (Xu et al. 2011) isolation of specific 

DNA molecules,(Fitzgerald and Grivel 2013) or detection of biomarkers.(Joo et al. 

http://onlinelibrary.wiley.com/doi/10.1002/smll.200500214/pdf
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2012) The large surface of a microsphere makes it possible to increase the sensitivity 

because a large number of antibodies can be attached. Simultaneous detection of six 

cytokines IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α in equine plasma using fluorescent 

microsphere immunoassays (FMIA) has been reported.(Hall et al. 2015) Compared 

with ELISA, FMIA has a higher sensitivity (~41 pg mL-1). An electrochemical 

bioassay for analysis of TNF-α as low as 44 pg mL-1 was developed by coupling 

magnetic beads with disposable electrochemical platforms.(Bettazzi et al. 2013)  

5.3 Surface-based signal enhancement tools 

Recently, surface enhancement approaches have been developed to increase 

fluorescence signals from the available number of fluorophore labels to improve the 

sensitivity of fluorescence based assays. This approach uses either photonic crystals 

(PC) or, more commonly, metal nanostructures to enhance the sensitivity of molecular 

detection. SERS based surfaces have also been intensely investigated and show 

particular promise for sensitive cytokine detection.(Cialla et al. 2012) PC surfaces can 

enhance sensitivity of cytokine through the use of narrow bandwidth optical 

resonances that are designed to occur at specific combinations of excitation 

wavelength and incident angle. An ultrasensitive immunoassay based on 

nanoparticles-assembled PC was developed for detection of human epidermal growth 

factor receptor 2 (HER, breast cancer biomarker) with a detection limit as low as 10 

aM in less than 10 μL of serum-based sample.(Han et al. 2012) A PC surface was 

designed for multiplex cytokine detection which can improve the detection limit by a 

factor of seven.(Huang et al. 2011) Recently, embedding PC surface in the 

microfluidic chip resulted in 20 times fluorescence enhancement, which was applied 

for detection of TNF-α and IL-3 with 80 fM detection limits. (Tan et al. 2015) A 

fluorescence-enhancing microarrays on plasmonic gold films for multiplexed cytokine 

detection with up to three orders of magnitude higher sensitivity than on conventional 

nitrocellulose and glass substrates were developed.(Zhang et al. 2013) The approach 

was used for detection of VEGF, IL-1β, IL-4, IL-6, IFN-γ and TNF-α in a panel through 

a four-layer immunoassay approach. This work demonstrated a high throughput 
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multiplexed cytokine detection method with one order higher sensitivity (0.06 pg 

mL-1) and two order higher dynamic range than the conventional ELISA.  

 

Fiber-optic sensors are chemically passive, have small physical dimensions, and are 

able to access challenging environments.(Wang and Wolfbeis 2012) They offer an 

advantage of long interaction length which, in some situations can yield enhanced 

signals. Moreover, optical fiber biosensors can be used in combination with different 

types of spectroscopic techniques, e.g. absorption, fluorescence, phosphorescence, 

Raman, SPR. It is therefore not surprising that optical fibers were explored as an 

interesting platform for cytokine detection.(Huang et al. 2013b; Jeong et al. 2013) 

One of the published approaches was based on fiber-optic SPR for detection of IL-1, 

IL-6, and TNF-α in a buffered saline solution and a spiked cell culture 

medium.(Battaglia et al. 2005) In this study, the detection limit of IL-6 was reached to 

be 0.44 ng mL-1. It has also been demonstrated that optical fiber based sensors has 

potential for real-time monitoring of biologically relevant molecules in complex 

biological fluids. A fiber-optic localized surface plasmon resonance sensor was 

fabricated for detection of IFN-γ using spherical AuNPs on a flattened end-face of 

optical fiber.(Jeong et al. 2013) The authors emphasized that the fabricated SPR 

sensor can be used for real-time label-free immunoassay, by the virtue of having a fast 

detection time (5 min), high resolution and sensitivity (2 pg mL-1 for IFN-γ).   

5.4 Hairpin DNA probes based amplification strategy 

Recently lots of research work on hairpin DNA probe based immunosensors for the 

ultrasensitive detection of biomarkers has been reported.(Ge et al. 2016; Gong et al. 

2014; Guo et al. 2015; Yao et al. 2014; Zhang et al. 2014a; Zhang et al. 2014b) This 

topic has been symmetrically reviewed.(Huang et al. 2015b) As an example, a hairpin 

aptamer DNAzyme probe was used for sensitive and visual detection of IFN-γ based 

on an original quadratic amplification strategy (Figure 5).(Zhou et al. 2013) In this 

study, the addition of target IFN-γ resulted in two recycling amplification cycles with 
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assistance of Bst-polymerase and λ exonuclease to generate numerous 

G-quadruplex/hemin DNAzymes. Colorless ABTS2- is converted into to a green-color 

product ABTS- with presence of H2O2. This produces a dramatic color change of the 

solution which enables highly sensitive visual detection of IFN-γ (50 pM) with the 

naked eye. Using the similar amplification strategy as Zhou et al, Zhang and 

coworkers developed a method to quantify IFN-γ with two orders higher sensitivity 

(0.1 pM).(Zhang et al. 2014b) Recently, a new type of amplified fluorescence 

polarization (FP) aptasensor based on allostery-triggered cascade strand-displacement 

amplification (CSDA) and polystyrene nanoparticle (PSNP) enhancement for 

ultrasensitive detection of cytokines has been developed.(Huang et al. 2015c) The 

assay system consists of a fluorescent dye-labeled aptamer hairpin probe and a 

PSNP-modified DNA duplex (assistant DNA/trigger DNA duplex) probe with a 

single-stranded part and DNA polymerase. Two probes coexist stably in the absence 

of target, and the dye exhibits relatively low FP background. Upon recognition and 

binding with a target protein, the stem of the aptamer hairpin probe is opened, after 

which the opened hairpin probe hybridizes with the single-stranded part in the 

PSNP-modified DNA duplex probe and triggers the CSDA reaction through the 

polymerase-catalyzed recycling of both target protein and trigger DNA. Throughout 

this CSDA process, numerous massive dyes are assembled onto PSNPs, which results 

in a substantial FP increase that provides a readout signal for amplified sensing 

process. This newly proposed amplified FP aptasensor enables the quantitative 

measurement of VEGF165 with a detection limit of 86 aM, which is about six orders of 

magnitude lower than that of traditional homogeneous aptasensors.  
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Figure 5 The principle of novel quadratic amplification strategy for highly sensitive 

visual detection of IFN-γ. Reprinted with the permission.(Zhou et al. 2013)  

6. Multiplex cytokine detection 

Cytokines act in concert to function in network of effectors. In clinical studies, a 

multianalyte profiling approach provides more information on the cytokine network 

than a single-analyte measurement, as several cytokines need to be tested in each 

sample, ideally in real time. The quantitation of multiple analytes by multiplexed 

immunoassays offers the advantages of specificity and reduced sample and reagent 

volumes with implications for the cost-effectiveness of assay. The most popular 

methods for multiplex cytokine detection are based on color-coded beads and biochip 

assays. 

6.1 Colour-coded beads 

In high-throughput sensing technologies, the encoding microbeads and nanoprobes 

with a unique code is widely used to identify the attached ligand molecules. Blicharz 

and co-workers combined the advantage of microsphere based suspension array with 
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the use of a fluorescence microscope for the analysis of inflammatory cytokines in 

saliva.(Blicharz et al. 2009) The multiplexed antibody array in the study achieved 

simultaneous detection of ten cytokines associated with pulmonary inflammatory 

diseases in saliva. Only 100 μL sample was used and the total assay time was 2.5 h. 

Another bead-based platform reported in the literature to exploited ECL for 

simultaneous detection of antigens VEGF, IL-8, and TIMP-1 by imaging fluorescently 

encoded microbeads individually located in a microwell array.(Deiss et al. 2009) The 

multiplexed ECL platform in this case was an electrode prepared from etched fiber 

optic bundles coated with gold (Figure 6). The ECL from the array was viewed with a 

microscope by performing a cyclic voltammogram. This work was the first 

demonstration that individual sensing bead can be imaged by ECL in a multiplexed 

sandwich immunoassay.  

 

Figure 6 The sandwich immunoassay procedure. The beads are loaded into 

microwells created in an etched gold-coated fiber-optic bundle which acts as the 

working electrode (WE) for ECL. Reprinted with permission .(Deiss et al. 2009)  
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6.2 Sensor arrays 

Color coded beads (suspension arrays) are popular choice for multiplex cytokine 

detection, but there are limitations on the number of distinguishable codes in the same 

array. To overcome this obstacle, a new encoding approach was developed by the 

combination of QD and magnetic NPs with nanosphere structure which ensures a 

greatly enlarged encoding capacity by tuning the magnetic field.(Song et al. 2014) 

This approach has applied to detection of IgG to demonstrate the reliability of NPs as 

encoded carriers in multiplex immunoassays.(Stoeva et al. 2006) The result is that 

NPs conjugated with specific antibodies have bound only to the corresponding 

positive antigen immobilized on the substrate. In addition, the reproducibly obtained 

detection limit of IgG was low as 1 fM. The very bright and spectrally narrow NPs 

Raman tags using SERS provide new opportunities for the optical encoding 

systems,(Wang et al. 2012b) and are expected to revolutionize high-throughput 

bioanalysis where multiplexing at high levels is needed. With tunable optical 

waveguides, silicon photonic MR has been demonstrated great potential for multiplex 

cytokine detection.(Sloan et al. 2013) In addition, using the multiplicative effects of 

optical resonant coupling to the PC in increasing the electric field intensity 

experienced by fluorescent labels and the spatially biased funneling of fluorophore 

emissions through coupling to PC resonances, PC enhanced fluorescence can be 

adapted to increase the sensitivity (pg mL-1 level) towards multiplex cytokine 

detection.(George et al. 2013) 

7. Real time cytokine detection 

7.1 Microfluidic system 

Dynamic changes in analyte concentration are difficult to be measured in real time 

and in many cases this can only be done with special microfluidic devices.(Singhal et 

al. 2010) Microfluidic devices process volumes of fluids on the order of nanoliters 

and are capable to achieve multiplexing, automation, and high-throughput screening. 

The coupling and integration of a sensing system in a microfluidic device has 

javascript:popupOBO('CHEBI:35209','C3LC50579K','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=35209')
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successfully been applied for real-time analysis with a small amount of 

sample.(Konry et al. 2013) Quasi-real time cytokine detection has been realized by 

combining immunoassays with a micro fluidic device.(Nie et al. 2014) For example, a 

simple lab-on-a-chip biosensor was developed to perform near real-time diagnostics 

of clinically relevant analytes such as cytokines and antibodies.(Cohen et al. 2015) In 

this work, the reagent volumes were reduced to 0.5 µL (nearly three orders of 

magnitude less than in a conventional assay), and the washing steps required in 

standard immunoassays were eliminated by the same chip. In addition, the detection 

process could be accomplished in seconds (nearly in real-time) in the flow through 

incubation channel.  

In another example demonstration of this approach, IFN-γ released from an individual 

T-cell was detected by immunsensors integrated into a microfluidic chip.(Zhu et al. 

2008) In this study, cell purification and cytokine detection were performed on the 

same microdevice which was able to significantly reduce the detection time to 1 h and 

sample blood volume 3 µL (Figure 7). The microfluidic chips are also compatible 

with multiplexing. For example a multi-analyte aptasensor for rapid detection of 

cytokines has been developed.(Liu et al. 2011) In this study, IFN-γ was labeled with 

anthraquinonoid (AQ), and TNF-α was labeled with methylene blue (MB) redox 

reporters respectively. Once the cytokine conjugated with the corresponding aptamer, 

the now modified conformation of the aptamer resulted in decreased redox current. 

These microfluidic devices were integrated with the aptasensor by standard soft 

lithography. The cytokines released from T-cells or monocytes were monitored on the 

same electrode by use of square wave voltammetry. 
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Figure 7 (A) The conceptual design of microarrays for detection of T-cell-secreted 

cytokines. (B) A map of the 8 × 20 microarray for capturing T-cells and detecting 

T-cell-secreted IL-2 and IFN-γ. (C) Design of a microfluidic platform employed for 

integration with Ab microarrays. (D) An image of a PDMS microdevice employed for 

T-cell capture and cytokine detection experiments with one reaction chamber filled 

with unlysed whole blood. Reprinted with permission.(Zhu et al. 2008)  

 

Another multiplex method based on EC was developed using a silicon chip 

technology for real time detection of IL-1, IL-10, and IL-6 which were secreted in 

acute stages of inflammation after implantation of a surgical device into the 

patient.(Baraket et al. 2014) The fabricated silicon chip incorporated an array of eight 

gold microelectrodes which allow simultaneous detection of different cytokines 

through electrically addressable diazonium-functionalized antibodies. The interactions 

between cytokines and corresponding antibodies were monitored by electrochemical 

impedance spectroscopy. This design was highly sensitive towards three cytokines in 

a concentration range of 1-15 pg mL-1 where acute inflammation was observed. An 
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aptasensing surface combined with microfluidics was employed by other authors for 

detection of IFN-α and TNF-γ which were released from immune cells.(Liu et al. 

2012c) In the study, anti-IFN-α DNA aptamers and anti-TNF-γ RNA aptamer were 

thiolated and fuctionalized with the methylene blue redox reporter (Figure 8). The 

microdevice consisted of two parallel microfluidic channels, each channel containing 

four cell capture/sensing sites. Upon mitogenic activation, the secreted IFN-γ and 

TNF-α molecules were captured by aptamers, and monitored by performing square 

wave voltammetry at different time points at individually addressable electrodes. The 

detection limit of IFN-α and TNF-γ was found to be 0.06 nM and 0.58 nM, 

respectively.  

 

Figure 8 (A) Schematic of a pair of half ring-shaped Au electrodes were modified 

with different cytokine-binding aptamers. (B) Electrode layout. (C) 300 µm diameter 

of PEG wells are used to capture approximately 400 cells inside one well. Reprinted 

with the permission.(Liu et al. 2012c) 

 

Microfluidics, aptasensors, and surface micropatterning were also combined to detect 

local IFN-γ released from the captured CD4 T cells from a heterogeneous cell sample 

in real time.(Liu et al. 2011) The sensing mechanism is based on a change in hairpin 

conformation due to binding of cell-secreted cytokine molecules. To this aim, sensing 

electrodes were packaged in PEG so as to define cell attachment sites in the proximity 

of each electrode. These attachment sites were modified with anti-CD4 Ab to promote 

binding of CD4 positive T-cells. Upon infusing the sample (red blood cell lysed blood) 

into fluidic channels, leukocytes were captured next to sensing electrodes and 

stimulated to produce cytokines. The IFN-γ released by cells was then detected at the 

neighboring sensing electrodes by using square wave voltammetry. This method 
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makes it possible to detect local concentration of IFN-γ released from live cells in real 

time, and the signal appear as early as 15 min after when as few as 90 T-cells are 

stimulated.  

 

Bhavsar and co-workers developed a gold electrode electrochemical impedance 

immunosensor for label-free and sensitive detection of IL-12 in physiological fluids 

with the detection time of 90 s.(Bhavsar et al. 2009) An amperometric sensor was 

reported by Huang and coworkers for detection of IL-6 with the sensitivity of 4.7 pg 

mL-1.(Huang et al. 2013a) This research provides a promising starting point for future 

development of highly-sensitive, real-time cytokine detection.  

7.2 Biochips 

Designing suitable biochips is another approach to achieve dynamic and local 

monitoring of cytokine expression. This is an active area of research and recent trends 

in protein biochip technology has been reviewed.(Reddy Jr et al. 2015) Several groups 

are employing antibody-modified surfaces in conjunction with detection technologies, 

such as SPR to monitor cytokine secreted from cells in real time.(Milgram et al. 2011; 

Valentina et al. 2015)  This is a promising direction for dynamic, label-free sensing, 

but the problem of expensive instrumentation will need to be addressed and detection 

of specific cell-secreted cytokines has yet to be demonstrated. In a few instances the 

biochip technology has been combined with the microfluidic system to realize the real 

time detection.(Jokerst et al. 2010) 

8. Practical considerations in cytokine immunosensing 

For designing an immunosensing device, stability is a crucial factor besides the 

sensitivity, selectivity, and other factors reviewed in above sections. Among various 

methods for binding, covalent coupling is one of the best functionalization approaches 

because it results in a strong and stable attachment of desired biomolecules on the 

substrate.(Liu et al. 2014b) The traditional self-assembled monolayer (SAM) of thiols 

are widely used in many studies, but this approach has many limitations.(Civit et al. 
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2010) Recently, aryldiazonium salt chemistry-based surface functionization has 

attracted many researchers because it can overcome the disadvantages of gold thiol 

chemistry while keeping its advantages. In addition, aryldiazonium salts with different 

terminal groups can be grafted on various materials to form stable covalent bonds, 

which significantly widens its application in sensing.(Mahouche-Chergui et al. 2011)  

Our team has reported many immunosensing interfaces based on the stable 

aryldiazonium salt chemistry.(Liu et al. 2014a; Liu et al. 2012b; Liu et al. 2014b) 

Recently Arya et al. presented a new platform based on 4-fluoro-3-nitrophenyl grafted 

gold disk electrode for label free quantification of IL-2 with detection limit of 1 pg 

mL-1.(Arya and Park 2014) Besides formation of stable organic layers on interface, 

the stability of antibody on sensing interface is another important factor that can 

significantly affect sensor performance.(Ahn et al. 2013) The desorption of antibodies 

reduces the surface density of capturing molecules which leads to false 

negatives.(Ahn et al. 2012) Although, stability is essential for the sensing device 

development, it is surprising to find that the stability of sensing interface is 

infrequently discussed in the context of cytokine detection. Hence, there is plenty of 

scope for improvement in this area. 

 

Reproducibility is another important property of a successful biosensor. Only a few 

studies focus on this topic for cytokine detection.(Agalliu et al. 2013; Hosnijeh et al. 

2010) To our knowledge, the reported methods for cytokine immunosensing mostly 

concentrate on the increase in sensitivity and decreased sample volume but not on 

reproducibility, which might be due to the challenges of cytokine detection as we 

summarized in Figure 1. Thus this review will not be able to satisfactorily cover this 

topic. 

9. Commercial cytokine detection assays 

A number of commercial cytokine kits based on different platforms are available and 

listed at Table S2. Despite these active activities on cytokine kit development, the 
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precision and reproducibility of these new approaches have not been well defined. In 

a study of multianalyte bead-based (Luminex) kits, the World Health Organization 

(WHO) cytokine standards were assayed at the same expected concentrations as the 

standards provided with each kit, but the WHO and kit standards often yielded very 

different absolute concentrations.(Nechansky et al. 2008) For example, the IL-4 

standard from Linco was greatly (more than 1 log) underestimated in the Linco kit 

compared to the WHO standards although the read-out obtained with the IL-2 

standards provided by all kits were in accordance with the WHO standard. In addition, 

multiple studies have compared standard-sensitivity multiplex assays with each 

other.(Breen et al. 2011; Moncunill et al. 2013; Richens et al. 2010) These comparison 

studies have shown variable agreement among assays and have indicated that absolute 

cytokine concentrations differ across testing platforms. Such variability is not unique 

to multiplex assays, as proficiency testing has demonstrated that absolute 

concentrations of cytokines measured by a single-analyte ELISA can vary widely 

from lab to lab, although a similar rank order of cytokine concentrations between 

samples is often preserved. Differences in the number of samples detected in accurate 

range and reproducibility were observed depending on the method used and even the 

cytokine detected, although Luminex-based kits were found to be highly reproducible 

and reliable.(Berthoud et al. 2011) Hence, the cytokine amount measured was 

critically influenced by the actual kit used. The quantitive determination of cytokines 

and therefore their use as biomarkers in serum samples have to be interpreted with 

specified conditions. 

10. Conclusion and future perspectives 

Cytokine immunosening approaches provide powerful tools for future of infectious 

disease diagnosis and drug screening.(Zhou et al. 2012) Hence, there is continuing 

demand for cytokine detection by immunosensing. The significant cytokine detection 

challenges can be met by designing functional sensing interfaces with improved 

performance. For example, engineering nanomaterials applied to the sensing interface 

or using surface enhancement techniques can greatly increase detection sensitivity. 
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Introducing monoclonal antibodies, aptamers, or anti-biofouling molecules to the 

sensing interface provides a pathway to improve selectivity. In addition, conjugation 

detection antibodies with different labels helps realize multiplex cytokine detection. 

More importantly, it is possible to achieve real time cytokine detection by integrating 

microfluidic devices, new nanotechnology tools and different transducer methods. 

Selected exciting technologies for cytokine analysis proposed and developed by 

various groups, have been outlined in this review.   

 

What about the future for cytokine detection? Regardless of multiple recent 

developments, ELISA is likely to remain the standard workhorse for cytokine 

detection. The ability to measure multiple cytokines simultaneously and in real time is 

extremely important in a variety of physiological conditions, because the concentration 

fluctuation of one cytokine often induce changes in other networked cytokines. Thus 

more efforts need to be invested in finding improved labels which are able to report the 

optical or electrochemical signals efficiently. Together with fibre-optical based sensors, 

colour-coded beads combining with microfluidic devices will have great potential for 

real time in vivo multiplex cytokine detection in the future.(Revzin et al. 2012) 

Moreover, aptamer based biosensors will be the next hot topic for cytokine detection 

because of their high stability, while aptamers against more cytokines will be required. 

Therefore, research in the area of cytokine immunosensing is in its early stages, and 

will continue to grow. Its further development will have significant effect on cytokine 

biology and early diagnosis of a range of diseases. 
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