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Summary

The ability of DNA to form loops has been employed by evolution in almost every aspect

of biology involving DNA, not least the regulation of gene transcription. The biophysical con-

straints on looping of the DNA polymer at short range (< 300 bp) have been extensively studied,

however it is uncertain how the probability of DNA looping decays at longer range. The first

part of this thesis presents a quantitative investigation of long range DNA looping both in vivo

in E. coli and in vitro. DNA looping is more efficient in vivo than measured in vitro (by our

collaborators) with the technique of Tethered Particle Motion (TPM), and we suggest that DNA

supercoiling aids DNA looping in vivo. By measuring long-range looping in vivo using the two

well-characterised looping proteins (the LacI and λCI repressors) and thermodynamic models of

DNA looping, the decay in looping probability is quantified over the range 242–10000 bp. Fur-

thermore this decay is shown to be a property of the DNA tether linking the loop, independent

of the nature of the DNA looping protein(s).

Enhancers activate genes at long distance irrespective of position and orientation, so why

don’t enhancers activate the wrong genes? In other words, what mechanisms drive efficiency

and specificity in enhancer-promoter looping? The loop domain model proposes that DNA

loops formed by insulators pose a topological barrier that restricts the reach of enhancers to the

vicinity of desired target promoter(s). Specifically, the model predicts that two DNA loops in an

alternating arrangement should form somewhat mutually exclusively (i.e. they should interfere

with one another’s formation), whereas nested DNA loops are predicted to assist one another’s

formation, and side-by-side loops should form independently. In the second part of this thesis,

the loop domain model is tested in E. coli by combining LacI and λCI-mediated DNA loops in

these different orientations. Accordingly, we quantify DNA looping assistance and interference

by fitting experimental data to a statistical-mechanical model, confirming the predictions of the

loop domain model. Furthermore, TPM measurements of the same looping constructs support

predictions that non-supercoiled DNA in vitro should facilitate DNA looping assistance, but not

interference. In addition to confirming the loop domain model in E. coli, this thesis provides a

strong experimental and theoretical foundation for further investigations of enhancer-promoter

looping in prokaryotes and eukaryotes, and the relationship between chromatin architecture and

gene expression in metazoans.
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