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Abstract 35 

Metastasis is a crucial step of malignant progression and is the primary cause of death from 36 

endometrial cancer. However, clinicians presently face the challenge that conventional surgical-37 

pathological variables, such as tumour size, depth of myometrial invasion, histological grade, 38 

lymphovascular space invasion or radiological imaging are unable to predict with accuracy if the 39 

primary tumour has metastasized. In the current retrospective study, we have used primary tumour 40 

samples of endometrial cancer patients diagnosed with (n=16) and without (n=27) lymph node 41 

metastasis to identify potential discriminators. Using peptide matrix assisted laser 42 

desorption/ionisation mass spectrometry imaging (MALDI-MSI), we have identified m/z values which 43 

can classify 88% of all tumours correctly. The top discriminative m/z values were identified using a 44 

combination of in situ sequencing and LC-MS/MS from digested tumour samples. Two of the proteins 45 

identified, plectin and α-Actin-2, were used for validation studies using LC-MS/MS data independent 46 

analysis (DIA) and immunohistochemistry. In summary, MALDI-MSI has the potential to identify 47 

discriminators of metastasis using primary tumour samples.  48 

  49 
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Statement of Significance 50 

Endometrial cancer is the most common gynaecological malignancy in Australia with 2,256 diagnosed 51 

cases in 2010 and 381 associated deaths in 2011. The presence or absence of lymph node metastasis 52 

is the most important prognostic factor in early stage I endometrial cancer. Of the patients diagnosed 53 

with stage I disease, around 10% will have pelvic lymph node metastases (LNM). Despite the small 54 

percentage of patients who suffer from metastasis the majority undergo radical treatment including 55 

the removal of lymph nodes; a precautionary measure carried out due to our current inability to 56 

accurately stage the disease. Lymph node removal is associated with significant complications 57 

including lower extremity lymphoedema, occurring in up to 38% of patients. A classification system 58 

based around predictive tissue markers of metastasis is therefore essential to determine the optimal 59 

treatment strategy for endometrial cancer patients and to reduce disease morbidity. In this study we 60 

show that data acquired from the MALDI imaging of primary endometrial carcinomas can be used to 61 

successfully predict the presence or absence of LNM with an overall accuracy of 88.4%. The 62 

development of such a classification method shows the diagnostic potential of MALDI imaging in 63 

determining the metastatic potential of primary carcinomas.  64 

 65 

  66 



5 
 

1. Introduction 67 

Endometrial cancer (EC) is the most frequent malignant tumour occurring in the female reproductive 68 

system. Based on the histology and clinical practice EC is divided into two subgroups: low-grade 69 

endometroid adenocarcinomas (Type I) and high-grade endometrioid and non-endometroid (Type II) 70 

carcinomas [1]. Type I EC accounts for 65% of all EC cases. These cancers are usually low grade, 71 

associated with oestrogen excess, obesity and atypical endometrial hyperplasia. Due to presence of 72 

early symptoms, the vast majority of type I carcinomas are diagnosed when the tumour is still confined 73 

to the uterus and these are cured by surgery in most cases resulting in a 5-year survival rate above 74 

70% [2]. However, patients with recurrent EC have a 5 year survival rate below 40% despite 75 

intervention with chemotherapy and/or radiotherapy [2].  76 

Currently accepted prognostic [prognostic = survival] factors for EC include the histological subtype, 77 

grade and International Federation of Gynecology and Obstetrics (FIGO) stage of the disease [3]. Deep 78 

(>50%) myometrial invasion and high histological grade are associated with the presence of lymph 79 

node metastasis (LNM) and adverse prognosis in EC [4]. Based on pathology findings, Milam et al. 80 

categorized EC patients as low risk for LNM if the tumour size was ≤ 2cm, well or moderately 81 

differentiated, and depth of myometrial invasion was ≤ 50%. Tumours that did not meet all three 82 

criteria were considered at high risk for LNM [5]. A study by Jacques et al. showed that a large 83 

percentage of EC will be misclassified before surgery [6]. Although only 15% of EC patients have or 84 

develop metastasis, the majority undergo radical treatment including removal of lymph nodes. This 85 

procedure is associated with significant complications including lower extremity lymphoedema, deep 86 

vein thrombosis and vascular or nerve injury [7]. 87 

Metastasis is a complex process in which tumour cells from the primary neoplasm acquire the ability 88 

to survive detachment, intravascular circulation, and implant and proliferate at a secondary site [8]. 89 

Recent studies in a variety of cancers have shown that metastatic potential of a primary tumour can 90 

be determined by genomic and proteomic analysis [9-12]. Moreover, in recent years a number of 91 

proteomic approaches have identified primary tumour signatures that accurately predict the presence 92 

of LNM, overall survival or disease recurrence [13-18]. Therefore, we hypothesised that the metastatic 93 

potential of a primary EC could be reflected at the proteome level and could be determined through 94 

the identification of molecular discriminators using MALDI mass spectrometry imaging (MALDI-MSI).  95 

MALDI-MSI allows for the in situ characterisation of tissue sections, enabling the relative 96 

quantification and spatial expression profiling of thousands of peptides within and between tissues 97 

[19]. This technique allows a comparison of tissue histology with corresponding spatially resolved 98 



6 
 

mass spectrometric information. The identification of differentially expressed m/z values cannot be 99 

achieved from a standard MALDI-MSI experiment alone [20] and moreover, single m/z values can 100 

match several peptide masses from the corresponding LC-MS/MS data of the tissue extract, even 101 

when using relative high mass accuracy in the MALDI-MSI experiment using internal calibrants. 102 

Although, in situ MS/MS data are often poor and don’t reveal direct identification; combining the two 103 

methods and matching m/z values of the intact peptides and y and b ions from both fragmentation 104 

patterns provides identification in most cases. 105 

Recently, we have shown the capacity of MALDI-MSI to discriminate regions of healthy endometrial 106 

tissue from tumour [21]. Here we present an analysis of primary EC specimens with (n=16) and without 107 

LNM (n=27) by MALDI-MSI. Upon data acquisition, a Canonical Correlation Analysis (CCA) based 108 

method was applied to rank the intensities of the acquired MALDI m/z values based upon their power 109 

to discriminate the primary carcinomas with metastasis from those without. This ranking was used to 110 

reduce the dimension of the data to the top ranked m/z values prior to classification by linear 111 

discriminant analysis (LDA), and the performance of this classification was judged by leave one out 112 

(LOO) cross validation (for details see Winderbaum et al.[22]).  113 

The top m/z values were targeted for identification using the complementary techniques of in situ 114 

MALDI MS/MS and matching to peptide sequences obtained from traditional nano-flow liquid 115 

chromatography electrospray ionization tandem mass spectrometry (nanoLC-ESI-MS/MS). The 116 

differential expression of plectin and α-Actin-2 between the primary carcinomas with and without 117 

LNM was further validated using label-free quantitative LC-MS/MS and immunohistochemistry. In 118 

summary we have identified α-Actin-2 as a potential discriminator of increased risk of LNM in EC. 119 

2. Material and Methods 120 

2.1. Sample collection and Tissue specimens 121 

Formalin-fixed paraffin-embedded (FFPE) tissue samples were retrieved from the archives of the 122 

Institute of Medical and Veterinary Science, Adelaide, South Australia, Royal Prince Alfred Hospital, 123 

Sydney, New South Wales, John Hunter Hospital, Newcastle, New South Wales and King Edward 124 

Memorial Hospital, Perth, Western Australia. The study was approved by the ethics committees of the 125 

different institutions. The histo-morphological and clinical information for the patients is provided in 126 

Supplementary Table 1. 127 

2.2. Tissue microarray construction 128 
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TMAs were constructed as previously described [23]. Primary tumour sections were annotated by a 129 

pathologist and two cores representing tumour centre were used to construct two TMA’s. However, 130 

after TMA construction, all medical records were carefully reviewed by a clinician again and samples 131 

with mixed carcinoma were excluded from the study. This led to overall exclusion of 14 samples from 132 

57 patient samples and the final cohort was comprised of a total of 43 patients (n=16 with LNM and 133 

n=27 without LNM), which were assembled in two TMAs (named TMA1 and TMA2). Serial 6µm 134 

sections were mounted onto indium titanium oxide (ITO) conductive glass slides for MALDI-MSI 135 

analysis (Bruker Daltonics, Bremen, Germany). Sections were also placed on plain glass slides and 136 

Polyethylene Naphthalate (PEN) membrane slides (MicroDissect, Herborn, Germany), and 137 

haematoxylin and eosin (H&E) stained for pathology annotation and laser microdissection (LMD) 138 

respectively.  139 

2.3. Sample preparation for FFPE MALDI-MSI  140 

MALDI-MSI was carried out as previously described [24] in duplicate on consecutively cut TMA 141 

sections. Briefly, the tissues were deparaffinised, subjected to heat induced citric acid antigen retrieval 142 

(HIAR) (10 mM citric acid, pH=6), followed by digestion with trypsin gold (Promega, Madison, WI) at 143 

37°C for 2 hours. Internal calibrants and α-cyano-4-hydroxycinnamic acid (CHCA) matrix were 144 

overlayed using an ImagePrep station [25].  145 

2.4. TMA analysis by MALDI-MSI  146 

MALDI imaging of the TMAs was carried out using an ultrafleXtreme MALDI-TOF/TOF MS (Bruker 147 

Daltonics, Bremen, Germany) with flexControl v3.0.1 and flexImaging v4.0.1 software (Bruker 148 

Daltonics) in positive reflectron mode over a detection range of m/z 800-4000 Da. MS spectra was 149 

acquired in a raster based grid with a centre to centre resolution of 60 µm. Technical replicates of each 150 

TMA were measured. After data acquisition, the matrix was removed with 70% ethanol, the TMA cores 151 

were H&E stained, and digitally scanned using a Nanozoomer (Hamamatsu Photonics, Shimadzu, Japan) 152 

and images were obtained using imaging software (NDP scan software v2.2, Hamamatsu Photonics). 153 

To align the MS data with the tissue histology the H&E scanned cores were co-registered with the 154 

MALDI-MSI results and annotated using the flexImaging software. Tissue regions containing only areas 155 

of primary tumour were selected and the spectra lists for these regions were exported as .XML files.  156 

2.5. MALDI-MSI Canonical Correlation Analysis (CCA) 157 

A detailed description of the CCA method can be found in Winderbaum et al.[22]. Briefly, arbitrarily 158 

located bins with a width of 0.25 Da were used to discretise m/z domains in order to group peaks. The 159 

intensity values of the peaks in each of these defined peak groups (m/z bin) were log-transformed and 160 
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averaged across the annotated tumour areas for each patient. These averages were assembled into a 161 

data matrix with columns representing each analysed patient and rows corresponding to the m/z bins. 162 

The rows of this matrix were then ranked using the developed CCA based method for their ability to 163 

distinguish between primary carcinomas with and without LNM. A dimension reduced submatrix 164 

consisting of the top ranked rows was then analysed using linear discriminant analysis (LDA) in order 165 

to predict the LNM status of the 43 patients. All analyses were replicated in parallel using two alternate 166 

(shifted) bin locations, resulting in three analyses in total. A majority rule was used to combine the 167 

data.  168 

2.6. Data analysis using SCiLS lab  169 

For data dependent visualization of tissue morphological regions, raw data was uploaded into the 170 

SCiLS lab software (v2015a, GmbH, Bremen, Germany). Here the data was pre-processed including top 171 

hat baseline removal and total ion count (TIC) normalization, and peak alignment and picking was 172 

performed [26]. The spatial expression profiles of the m/z values found to have discriminative power 173 

in the CCA were visualised in the form of ion intensity maps, and receiver operating characteristic 174 

(ROC) curves of these m/z values comparing the intensities of the tumours with and without LNM was 175 

generated.  176 

2.7. Identification of m/z values by in-situ MALDI MS/MS and nanoLC-ESI-MS/MS 177 

In order to gain peptide identifications for the m/z values of interest, in situ MS/MS was performed 178 

directly from the tissue used in the MALDI-MSI analysis and searched using Mascot (Version 2.3.02) 179 

as previously described [24]. For matching back to peptide sequences obtained by data dependent 180 

acquisition, nanoLC-ESI-MS/MS, primary tumour and normal tissue regions of interest were collected 181 

from the TMA cores using LMD, subjected to HIAR, and digested with trypsin [23]. NanoLC-ESI-MS/MS 182 

was performed using an Ultimate 3000 RSLC system (Thermo-Fisher Scientific) coupled to an Impact 183 

II™ QTOF mass spectrometer (Bruker Daltonics) via an Advance CaptiveSpray source (Bruker 184 

Daltonics). Peptide samples were pre-concentrated onto a C18 trapping column (Acclaim PepMap100 185 

C18 75 μm × 20 mm, Thermo-Fisher Scientific) at a flow rate of 5 μL/ min in 2% ACN 0.1% TFA for 10 186 

minutes. Peptide separation was performed using a 75 μm ID C18 column (Acclaim PepMap100 C18 187 

75 μm × 50 cm, Thermo-Fisher Scientific) at a flow rate of 0.2 μL/ min using a linear gradient from 5 188 

to 45% B (A: 5% ACN 0.1% FA, B: 80% ACN 0.1% FA) over 130 minutes, followed by a 20 minute wash 189 

with 90% B, and a 20 minute equilibration with 5% A. MS scans were acquired in the mass range of 190 

300 to 2200 m/z in a data-dependent fashion using Bruker’s Shotgun Instant Expertise™ method. 191 
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Singly charged precursor ions were excluded from acquisition. Collision energy ranged from 23% to 192 

65% as determined by the m/z of the precursor ion. 193 

Acquired spectra were subjected to peak detection, de-convolution, and re-calibration according to a 194 

lock mass using Compass DataAnalysis for OTOF (Version 1.7, Bruker Daltonics). Processed spectra 195 

were then exported to Mascot generic format and submitted to Mascot (Version 2.3.02) for 196 

identification. Search parameters were as follows; SwissProt Homo sapiens database search, trypsin 197 

digestion with up to 2 missed cleavages, variable modification of oxidation of methionine, MS mass 198 

tolerance of 40 ppm and a MS/MS mass tolerance of 0.2 Da. In Mascot an ion score cut off of 20 with 199 

a peptide significance threshold of ≤0.05 was used, which corresponds to a false discovery rate 200 

(peptide level) of <2%. Matching between the MALDI-MSI and nanoLC-ESI-MS/MS was done by 201 

comparing the experimental m/z values of the nanoLC-ESI-MS/MS sequenced peptides to the m/z 202 

values from the compiled peak bins.  203 

2.8 Quantification of peptides by data independent acquisition (DIA) nano-LC-ESI-MS/MS results 204 

DIA nano-LC-ESI-MS/MS was performed on LMD normal and cancer tissues from 4 patients with, and 205 

4 patients without LNM. Nano-LC was performed as described above using an Ultimate 3000 RSLC 206 

system coupled to an Impact II™ QTOF mass spectrometer. The Impact II™ QTOF acquired data using 207 

Bruker’s Middle Band CID™ method where a mass range of m/z 375 to 1206 is scanned in 26 Da 208 

increments with increasing collision energies of 20 to 36. Data were analysed in the Skyline software 209 

against a spectral library generated from the previous nano-LC-ESI-MS/MS experiments [27]. The 210 

peptide and transition settings during analysis were as follows; trypsin was specified as the cleavage 211 

enzyme with a maximum of 1 missed cleavage, precursor charge states 2 and 3, ion charges 1 and 2, 212 

ion types y and b from ion 3 to 6, ion match tolerance 0.1 m/z, a MS/MS filtering DIA isolation scheme 213 

from m/z 400 - 1206 (26 Da windows), a resolution 10 000, and only scans within 5 minutes retention 214 

time window of spectral library MS/MS identification used. Summed area intensities for the analysed 215 

peptides were calculated from y and b ions 3 to 6 (starting from ion 3). For each peptide analysed, the 216 

relative intensity in the tumour tissue was normalised to the relative intensity of the normal tissue 217 

from each patient.  218 

2.9. Immunohistochemistry (IHC) 219 

For the analysis of plectin and α-Actin-2 by IHC, 6 µm TMA sections were analysed as previously 220 

described [28]. Briefly, the tissue sections were dewaxed, rehydrated with xylene and ethanol and 221 

subjected to microwave antigen retrieval for 10 minutes at 100⁰C (Sixth Sense, Whirlpool, VIC, 222 

Australia) in 10mM citric acid buffer pH=6. TMA sections were incubated overnight at 4⁰C with either 223 



10 
 

α-Actin-2 (1/500, rabbit polyclonal, ProteinTech, Chicago, USA) or plectin (1/250, rabbit monoclonal, 224 

Abcam, MA, USA) in blocking buffer (5% goat serum), followed by incubation with biotinylated anti-225 

rabbit immunoglobulin (1/400, Dako, NSW, Australia) and streptavidin-HRP (1/500, Dako). 226 

Immunoreactivity was detected using diaminobenzidine (DAB)/H2O2 (Sigma Aldrich) substrate and 227 

counterstaining with haematoxylin (Sigma Aldrich). TMA slides were digitally scanned using a 228 

Nanozoomer and images were obtained using NDP view imaging software. Analysis was carried out in 229 

IHC Profiler-Image J [29]. For each tissue core, three representative photo-micrographic images at 40x 230 

magnification were analysed. 231 

3. Results and Discussion 232 

3.1. MALDI MSI 233 

MALDI-MSI was carried out on two TMA (TMA1 and TMA2), two replicates per patient were used 234 

resulting in a total of 86 primary endometrial carcinoma tissue cores from 43 patients with (n=16) and 235 

without (n=27) LNM. Peak groups were generated from the MALDI-MSI data and then ranked using a 236 

CCA based method for their ability to distinguish between the primary carcinomas with and without 237 

LNM. A list of the top m/z bins (peak groups) with the capacity to differentiate the primary cancer 238 

types is shown in Supplementary Table 2. Reducing the data to these m/z values, and using LDA to 239 

discriminate between primary carcinomas with and without LNM, a classification accuracy of 38 out 240 

of 43 patients (88.4%) was achieved by LOO cross validation (for details see Winderbaum et al.[22]). 241 

3.2. Identification of discriminative m/z values  242 

The top discriminating m/z bins of 0.25 Da were centred at: 802.42, 857.42, 915.42, 941.42, 944.42, 243 

967.42, 975.42, 976.42, 1027.67, 1032.67, 1115.42, 1138.67, 1157.67, 1161.67, 1167.67, 1198.67, 244 

1242.67, 1406.67and 1612.92 (in order of size). Potential peptide identifications for the top m/z bins, 245 

as ranked by the CCA, were compiled by matching back to sequences obtained by data dependent 246 

acquisition nanoLC-ESI-MS/MS (Supplementary Table 2). Of the 20 m/z bins, 3 had no matches back 247 

to the tandem MS data, with the remaining 17 having 2 or more sequence matches. In order to confirm 248 

peptide identifications, the m/z values were targeted for in situ MS/MS directly off the tissue, from 249 

which 2 peptides could be verified; m/z 1198 AVFPSIVGRPR (α-Actin-2), and m/z 976 AGFAGDDAPR 250 

(α-Actin-2).  251 

α-Actin-2 was targeted for further analysis given 3 of the top m/z bins matched to α-Actin-2  peptides. 252 

Moreover, the m/z value of 1501.42 was proteotypic for α-Actin-2 (data not shown). The m/z 967.42 253 

matching to plectin was selected given only two possible nano-LC-ESI-MS/MS sequence matches were 254 

obtained for this m/z value, and of these two matches the relative abundance of the plectin related 255 
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peptide was significantly greater in the nano-LC-ESI-MS/MS data than the alternative candidate and 256 

matched the high abundance in the MALDI-MSI data (data not shown). 257 

Figure 1 and 2 shows the ion intensity images for m/z 967.42 and 976.42 across the TMA. Tumour 258 

cores with LNM are circled red; tumours without LNM are circled green, yellow circles indicate controls 259 

and blue circles indicate cores which have been excluded from the analysis. All tumour regions within 260 

the tumour cores are annotated in the corresponding colour. Magnification of two replicate cores 261 

from one representative patient with LNM (Figure 1B, 2B) and without LNM (Figure 1C, 2C) reveals 262 

the expression of the m/z value within the tissue cores (H&E stain top panel, ion intensity images 263 

bottom panel). Although m/z 967.42 was included in the list of the top 20 list, SCiLS analysis only 264 

revealed a slight difference between the ion intensity between tumours with and without LNM (Figure 265 

1). However, the SCiLS analysis of m/z 976.42 revealed a difference between the ion intensity map 266 

between tumours with and without LNM (Figure 2). 267 

3.3. Validation by DIA 268 

The MALDI-MSI results for the α-Actin-2 and plectin peptides were verified by DIA nano-LC-ESI-269 

MS/MS. Analysis was carried out on LMD on normal and primary tumour tissue from 4 patients with 270 

LNM and 4 without LNM, who had not been included in the TMA analysis. DIA allows the differential 271 

quantification of the isobaric peaks by matching the retention time, as the unique fragment ions of 272 

the two species generate two different MS/MS chromatograms [30]. Therefore, retention time was 273 

used when matching back the data to the spectral library for DIA. The area intensities of the peptides 274 

matching back to the α-Actin-2 and plectin were summed for both tumour and normal tissues. The 275 

summed area intensity of the tumour was then normalised to that of the paired normal tissues. The 276 

normalised tumours were then compared with and without LNM using an unpaired T-Test in GrahPad 277 

Prism. A trend of increased expression in the primary tumours without LNM was observed for both 278 

plectin and α-Actin-2 peptides (Figure 3).  279 

3.4. Validation by immunohistochemistry 280 

The spatial expression profile of plectin was verified across the patient cohort by 281 

immunohistochemistry (Figure 4A). Quantitative analysis of immunostaining was performed using IHC 282 

Profiler-Image J [29] and as expected this indicated no difference between tumours with and without 283 

LNM; shown is the average staining intensity across all tumour cores (Figure 4B). Plectin scarcely 284 

stained normal tissue including stroma (Figure 4C); the staining of tumours cells was strong (Figure 285 

4C-E). In summary plectin IHC can highlight tumour cells, but staining intensity does not distinguish 286 

cases with and without LNM. 287 
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This is in contrast to data presented in the human proteome atlas (Version 14, updated 2015-10-16), 288 

where a medium intensity stain of plectin was detected in healthy endometrium and absent or low 289 

staining was usually detected in EC with one of three antibodies. However, the other antibodies 290 

showed different staining patterns, making a precise interpretation of the data difficult.  291 

It is known that tumour cell motility is required for invasion and metastasis [31, 32]. Plectin, has been 292 

found to be important in cytoskeletal network organization [33]. A number of studies have shown that 293 

increased levels of plectin correlate with migration and invasion [33-36]. However, our data show an 294 

increase in plectin staining in EC tumour cells unrelated of their metastatic potential. Furthermore, we 295 

have identified a number of peptides from the protein plectin which showed potential to discriminate 296 

between tumours with and without LNM. One representative m/z 967.4 (amino acid 1045-1052) is 297 

shown in Figure 1 and has been confirmed by DIA (Figure 3). However, the immunohistochemistry 298 

analysis failed to identify a difference in staining intensity of tumours with LNM when compared to 299 

tumours without LNM. A recent study has identified S1047 in plectin as a potential phosphorylation 300 

site offering one possible explanation of the discrepancy of results [37]. 301 

 302 

The spatial expression profile and differential expression of α-Actin-2 was verified across the patient 303 

cohort by immunohistochemistry (Figure 5A). Quantitative analysis of staining was performed using 304 

IHC Profiler-ImageJ and a significant difference in the negative staining (1.8 fold, p<0.05) between 305 

tumours without and with LNM was observed; shown is the average staining intensity across all 306 

tumour cores (Figure 5B). α-Actin-2 stained normal tissue (Figure 5C),while the staining of tumours 307 

with LNM was reduced (Figure 5D) when compared to tumour without LNM (Figure 5E). In summary 308 

α-Actin-2 IHC staining intensity has the potential to distinguish between tumours with and without 309 

LNM. 310 

This is in agreement with the data presented in the human proteome atlas (Version 14, updated 2015-311 

10-16), where a medium intensity stain of α-Actin-2 was detected in healthy endometrium and absent 312 

or low staining was detected in EC with four different antibodies. 313 

Cytoskeletal proteins facilitate the biological modes of cells: migration, cell division, differentiation 314 

and cell death. It is therefore not surprising that these proteins are frequently identified in 315 

comparative proteomic studies. α-Actin-2, the human aortic smooth muscle actin gene, is one of six 316 

different actin isoforms which have been identified and has been described to facilitate migration of 317 

cells. A number of studies have shown that increased expression of α-Actin-2 leads prevents cellular 318 

motility [38, 39]. Accordingly, decreased expression of α-Actin-2  has been shown to contribute to the 319 
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metastatic potential of basal cell carcinoma [40]. Our data indicate a down-regulation of α-Actin-2 in 320 

tumours with LNM and therefore α-Actin-2 may have potential as a biomarker for EC metastasis.  321 

4. Concluding remarks 322 

In summary, MALDI-MSI has the potential to identify the markers of tumour metastasis by providing 323 

spatial intensity of proteins/peptides that might be associated with different tissue types and facilitate 324 

developing disease. Using MALDI-MSI data, we found a number of m/z values that could predict the 325 

status of LNM with an overall accuracy of 88.4%. Additionally, the m/z values were identified as α-326 

Actin-2 and plectin via in situ MS/MS (Supplementary Figure 1) and label free quantification 327 

(Supplementary Table 2). Furthermore, DIA (Supplementary Figure 2-6) and immunohistochemistry 328 

was used for relative quantification and validation. The role of α-Actin-2 and plectin in metastasis has 329 

already been described previously and could be useful as potential biomarkers for distinguishing EC 330 

with and without LNM.  331 
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Figure 1: Representative MALDI-MSI images for m/z 967.42± 0.125 Da. (A) Overview of one TMA slide, 332 

MALDI-MSI image of (intensity range from blue (lowest) to red (highest)). The samples belonging to 333 

different groups are indicated by different coloured circles: control (yellow), with LNM (red), without 334 

LNM (green) and mixed carcinoma/not included in the study (blue). The tumour regions (red) within 335 

the samples have been annotated by a pathologist. (B) Magnification of two cancer tissue spots with 336 

LNM showing H&E stain and the ion intensity images of m/z 967.42. (C) Magnification of two cancer 337 

tissue spots without LNM showing H&E stain and the ion intensity images of m/z 967.42. (D) MALDI-338 

MSI spectra displaying the mean spectrum from regions with LNM (red) and without LNM (green). (E) 339 

ROC curve with AUC of 0.396 340 

Figure 2:  Representative MALDI-MSI images for m/z 976.42± 0.125 Da. (A) Overview of one TMA slide, 341 

MALDI-MSI image of (intensity range from blue (lowest) to red (highest)). The samples belonging to 342 

different groups are indicated by different coloured circles: control (yellow), with LNM (red), without 343 

LNM (green) and mixed carcinoma/not included in the study (blue). The tumour regions (red) within 344 

the samples have been annotated by a pathologist. (B) Magnification of two cancer tissue spots with 345 

LNM showing H&E stain and the ion intensity images of m/z 976.42. (C) Magnification of two cancer 346 

tissue spots without LNM showing H&E stain and the ion intensity images m/z 976.42. (D) MALDI-MSI 347 

spectra displaying the mean spectrum from regions with LNM (red) and without LNM (green). (E) ROC 348 

curve with AUC of 0.313.  349 

Figure 3: DIA analysis of tumour sections with (n=4) and without (n=4) LNM. (A) The relative 350 

abundance of plectin was analysed in comparison to normal tissue set to 1.0. (B) The relative 351 

abundance of α-Actin-2 was analysed in comparison to normal tissue set to 1.0. The error bar indicates 352 

the standard deviation. 353 

Figure 4: Immunohistochemical staining of plectin (A) 6µm serial section of TMA 1 was used for 354 

immunohistochemistry (IHC). The different tissue types are encircled control (yellow), with LNM (red), 355 

without LNM (green) and mixed carcinoma/not included in the study (blue). (B) Quantitative analysis 356 

was performed using IHC profiler-Image J. For each tissue section, three representative photo-357 

micrographic images at 40x magnification were used and each image was assigned a score of high 358 

positive, positive, low positive and negative staining. Shown is the average staining intensity 359 

distribution of all analysed images Representative image of plectin immunostaining of normal tissue 360 

(C), tumour with LNM (D) without LNM (E). 361 

Figure 5: Immunohistochemical staining of α-Actin-2 (A) 6µm serial section of TMA 1 was used for 362 

immunohistochemistry (IHC). The different tissue types are encircled control (yellow), with LNM (red), 363 
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without LNM (green) and mixed carcinoma/not included in the study (blue). (B) Quantitative analysis 364 

was performed using IHC profiler-Image J. For each tissue section, three representative photo-365 

micrographic images at 40x magnification were used and each image was assigned a score of high 366 

positive, positive, low positive and negative staining. Shown is the average staining intensity 367 

distribution of all analysed images. Representative image of α-Actin-2 immunostaining of normal 368 

tissue (C), tumour with LNM (D) and without LNM (E). 369 

 370 

  371 
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