Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/104119
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: The basic physics of the binary black hole merger GW150914
Author: Abbott, B.P.
Abbott, R.
Abbott, T.D.
Abernathy, M.R.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R.X.
Adya, V.B.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O.D.
Aiello, L.
Ain, A.
Ajith, P.
Allen, B.
et al.
Citation: Annalen der Physik, 2017; 529(1-2):1600209-1-1600209-17
Publisher: Wiley Online Library
Issue Date: 2017
ISSN: 0003-3804
1521-3889
Statement of
Responsibility: 
B. P. Abbott … R. Abbott … Won Kim … Jesper Munch … David J. Ottoway … Peter J. Veitch … et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Abstract: The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35M₀, still orbited each other as close as ∼350 km apart and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.
Keywords: GW150914; gravitational waves; black holes
Rights: © 2016 The Authors. Annalen der Physik published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim.
DOI: 10.1002/andp.201600209
Grant ID: ARC
Published version: http://dx.doi.org/10.1002/andp.201600209
Appears in Collections:Aurora harvest 3
Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.