Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/11306
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | Molecular recognition in a post-translational modification of exceptional specificity |
Author: | Chapman-Smith, A. Morris, T. Wallace, J. Cronan Jr, J. |
Citation: | Journal of Biological Chemistry, 1999; 274(3):1449-1457 |
Publisher: | AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC |
Issue Date: | 1999 |
ISSN: | 0021-9258 1083-351X |
Statement of Responsibility: | Anne Chapman-Smith, Timothy W. Morris, John C. Wallace, and John E. Cronan, Jr. |
Abstract: | We have used localized mutagenesis of the biotin domain of the Escherichia coli biotin carboxyl carrier protein coupled with a genetic selection to identify regions of the domain having a role in interactions with the modifying enzyme, biotin protein ligase. We purified several singly substituted mutant biotin domains that showed reduced biotinylation in vivo and characterized these proteins in vitro. This approach has allowed us to distinguish putative biotin protein ligase interaction mutations from structurally defective proteins. Two mutant proteins with glutamate to lysine substitutions (at residues 119 or 147) behaved as authentic ligase interaction mutants. The E119K protein was virtually inactive as a substrate for biotin protein ligase, whereas the E147K protein could be biotinylated, albeit poorly. Neither substitution affected the overall structure of the domain, assayed by disulfide dimer formation and trypsin resistance. Substitutions of the highly conserved glycine residues at positions 133 and 143 or at a key hydrophobic core residue, Val-146, gave structurally unstable proteins. |
Keywords: | Escherichia coli Acetyl-CoA Carboxylase Carbon-Nitrogen Ligases Carrier Proteins Recombinant Fusion Proteins Amino Acid Substitution Mutagenesis, Site-Directed Biotinylation Protein Processing, Post-Translational Binding Sites Amino Acid Sequence Protein Binding Protein Folding Structure-Activity Relationship Kinetics Mutation, Missense Plasmids Models, Chemical Models, Molecular Molecular Sequence Data Fatty Acid Synthase, Type II |
Rights: | © 1999 by The American Society for Biochemistry and Molecular Biology, Inc. |
DOI: | 10.1074/jbc.274.3.1449 |
Published version: | http://dx.doi.org/10.1074/jbc.274.3.1449 |
Appears in Collections: | Aurora harvest 7 Biochemistry publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.