Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/119492
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Short-range non-bending fully distributed water/humidity sensors
Author: Chen, G.
Wu, X.
Schartner, E.
Shahnia, S.
Hebert, N.
Yu, L.
Liu, X.
Shahraam, A.
Newson, T.
Ebendorff-Heidepriem, H.
Xu, H.
Lancaster, D.
Monro, T.
Citation: Journal of Lightwave Technology, 2019; 37(9):2014-2022
Publisher: IEEE
Issue Date: 2019
ISSN: 0733-8724
1558-2213
Statement of
Responsibility: 
George Y. Chen, Xuan Wu, Erik P. Schartner, Soroush Shahnia, Nicolas Bourbeau Hébert, Li Yu, Xiaokong Liu, Shahraam Afshar V., Trevor P. Newson, Heike Ebendorff-Heidepriem, Haolan Xu, David G. Lancaster, and Tanya M. Monro
Abstract: Existing sensing technologies lack the ability to spatially resolve multiple sources of water or humidity without relying on the deployment of numerous inline sensors. A fully distributed approach has the potential to unlock a diverse range of applications, such as humidity mapping and liquid-depth measurements. We have explored a new direction toward what is, to the best of our knowledge, the first non-bending fully distributed water/humidity sensors. This new class of sensors was made possible from the first combination of small-core exposed-core fiber, a hydrophilic polyelectrolyte multilayer coating, and coherent optical frequency-domain reflectometry. Their non-bending nature enables deployment in a wider range of environments compared to the bending type based on water-induced fiber bending. The sensing mechanism involves monitoring back-reflected optical signals created by changes in the local reflectivity due to water-induced reduction in the local refractive-index of the coating. The demonstrated average sensitivity of the sensing fiber with 10.0 bilayer polyelectrolyte multilayer coating to relative humidity varies from 0.060 to 0.001/%RH (0-38 cm distance) within a dynamic range of 26-95%RH. The distance-dependent detection limit varies between 0.3-10.0%RH (0-38 cm distance), and the spatial resolution of 4.6 mm is the smallest demonstrated for exposed-core fibers and can be vastly improved by simply broadening the swept range. The response time is 4-6 s, and the recovery time is 3-5 s. The sensing range (i.e., distance) is -0.5 m, which is more suitable for water-depth monitoring.
Keywords: Distributed; exposed core; frequency; humidity; hygrometer; OFDR; optical fiber; polyelectrolyte coating; reflectometry; sensor; water
Rights: © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
RMID: 0030113879
DOI: 10.1109/JLT.2019.2897346
Grant ID: http://purl.org/au-research/grants/arc/CE140100003
http://purl.org/au-research/grants/arc/LP150100657
Appears in Collections:IPAS publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.