Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Characterizing transcriptional interference between converging genes in bacteria
Author: Hoffmann, S.
Hao, N.
Shearwin, K.
Arndt, K.
Citation: ACS Synthetic Biology, 2019; 8(3):466-473
Publisher: American Chemical Society
Issue Date: 2019
ISSN: 2161-5063
Statement of
Stefan A. Hoffmann, Nan Hao, Keith E. Shearwin, and Katja M. Arndt
Abstract: Antisense transcription is common in naturally occurring genomes and is increasingly being used in synthetic genetic circuitry as a tool for gene expression control. Mutual influence on the expression of convergent genes can be mediated by antisense RNA effects and by transcriptional interference (TI). We aimed to quantitatively characterize long-range TI between convergent genes with untranslated intergenic spacers of increasing length. After controlling for antisense RNA-mediated effects, which contributed about half of the observed total expression inhibition, the TI effect was modeled. To achieve model convergence, RNA polymerase processivity and collision resistance were assumed to be modulated by ribosome trailing. The spontaneous transcription termination rate in regions of untranslated DNA was experimentally determined. Our modeling suggests that an elongating RNA polymerase with a trailing ribosome is about 13 times more likely to resume transcription than an opposing RNA polymerase without a trailing ribosome, upon head-on collision of the two.
Keywords: Gene regulation; antisense transcription; transcriptional interference; mathematical modeling; Escherichia coli
Rights: © 2019 American Chemical Society
RMID: 0030108307
DOI: 10.1021/acssynbio.8b00477
Grant ID:
Appears in Collections:Molecular and Biomedical Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.