Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/120071
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarafraz, M.en
dc.contributor.authorJafarian, M.en
dc.contributor.authorArjomandi, M.en
dc.contributor.authorNathan, G.en
dc.date.issued2019en
dc.identifier.citationFuel Processing Technology, 2019; 188:110-117en
dc.identifier.issn0378-3820en
dc.identifier.issn1873-7188en
dc.identifier.urihttp://hdl.handle.net/2440/120071-
dc.description.abstractWe report an experimental demonstration of the chemical reactions for the chemical looping gasification process using molten bismuth oxide as the oxygen carrier. Cycling of the material without noticeable degradation was shown using a thermo-gravimetric analyser (TGA) furnace through both the reduction of bismuth oxide with carbon and its oxidation with air. The potential for any contamination of liquid bismuth oxide with the alumina container and of any agglomeration was assessed experimentally using x-ray diffraction (XRD) test. A kinetic model was also developed using Kissinger method to estimate the activation energy and the pre-exponential factor for the reduction and the oxidation reactions. It was found that the reduction and oxidation of bismuth and its oxide is feasible at temperatures of approximately 900 °C with the activation energies of 229.4 kJ/mol and 173.6 kJ/mol for the reduction and oxidation reactions, respectively at chemical conversion of 0.7. The chemical conversion of carbon in the presence of bismuth oxide was measured to reach 85% for the partial oxidation of carbon and to reach completion for the complete oxidation of bismuth. Furthermore, no containment challenges for liquid bismuth were identified in the alumina crucible at 900 °C. Hence, the proposed system offers potential to avoid the challenges of sintering and agglomeration that are associated with chemical looping systems using a solid oxygen carrier.en
dc.description.statementofresponsibilityM.M. Sarafraz, M. Jafarian, M. Arjomandi, G.J. Nathanen
dc.language.isoenen
dc.publisherElsevieren
dc.rights© 2019 Elsevier B.V. All rights reserved.en
dc.subjectThermo-gravimetric analysis; bismuth oxide; liquid oxygen carrier; Kissinger method; liquid bismuth containmenten
dc.titleExperimental investigation of the reduction of liquid bismuth oxide with graphiteen
dc.typeJournal articleen
dc.identifier.rmid0030109754en
dc.identifier.doi10.1016/j.fuproc.2019.02.015en
dc.identifier.pubid461838-
pubs.library.collectionMechanical Engineering publicationsen
pubs.library.teamDS14en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidSarafraz, M. [0000-0002-6347-0216]en
dc.identifier.orcidArjomandi, M. [0000-0002-7669-2221]en
dc.identifier.orcidNathan, G. [0000-0002-6922-848X]en
Appears in Collections:Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.