Please use this identifier to cite or link to this item:
Type: Conference paper
Title: Pseudo-nonlinear hydrodynamic coefficients for modelling point absorber wave energy converters
Author: Schubert, B.
Meng, F.
Sergiienko, N.
Robertson, W.
Cazzolato, B.
Ghayesh, M.
Rafiee, A.
Ding, B.
Arjomandi, M.
Citation: Proceedings of the 4th Asian Wave and Tidal Energy Conference (AWTEC 2018), 2018, pp.1-10
Publisher: AWTEC
Publisher Place: online
Issue Date: 2018
Conference Name: 4th Asian Wave and Tidal Energy Conference (AWTEC) (9 Sep 2018 - 13 Sep 2018 : Taipei, Taiwan)
Statement of
Benjamin W. Schubert, Fantai Meng, Nataliia Y. Sergiienko, Will Robertson, Benjamin S. Cazzolato, Mergen H. Ghayesh, Ashkan Rafiee, Boyin Ding, Maziar Arjomandi
Abstract: This study presents dynamic simulation results of two point absorber wave energy converters comparing between linear, pseudo-nonlinear, and CFD models. When modelling wave energy converters, linear assumptions are commonly used to simplify calculations. One such assumption is that the hydrody- namic parameters do not change with pose. This study proposes the inclusion of position and orientation dependence in force estimation, specifically the hydrodynamic terms. A comparison between linear, the proposed pseudo-nonlinear, and CFD models show the effect of the linear assumption for cylindrical and spherical submerged buoys in three degrees of freedom, subject to regular waves. For the case of strong nonlinear hydrodynamic coupling between degrees of freedom, the linear and pseudo- nonlinear models are compared with published literature trends. Accounting for pose dependence of hydrodynamic forces, drag forces, and infinite frequency inertial effects showed trends closer to CFD results but with generally higher motion amplitudes. Significant differences in results for the cylinder are due to the presence of near-surface nonlinear effects that are not captured using linear potential flow solvers. Furthermore, a second order effect was observed in the results, suggesting the proposed method may be well suited to model sufficiently submerged buoys.
Keywords: Submerged point absorber; nonlinear hydro- dynamics; numerical wave tank; wave energy converter; linear parameter varying
Rights: Copyright status unknown
Published version:
Appears in Collections:Aurora harvest 8
Mechanical Engineering conference papers

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.