Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Conference paper
Title: Ant colony optimization for power plant maintenance scheduling optimization
Author: Foong, W.
Maier, H.
Simpson, A.
Citation: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, 2005 / Hans-Georg Beyer et al. (eds.): pp.249-256
Publisher: The Association for Computing Machinery, Inc.
Publisher Place: New York
Issue Date: 2005
ISBN: 1595930108
Conference Name: Genetic and Evolutionary Computation Conference (7th : 2005 : Washington, D.C.)
Statement of
Wai Kuan Foong, Holger R. Maier, Angus R. Simpson
Abstract: In order to maintain a reliable and economic electric power supply, the maintenance of power plants is becoming increasingly important. In this paper, a formulation that enables ant colony optimization (ACO) algorithms to be applied to the power plant maintenance scheduling optimization (PPMSO) problem is developed and tested on a 21-unit case study. A heuristic formulation is introduced and its effectiveness in solving the problem is investigated. The performance of two different ACO algorithms is compared, including Best Ant System (BAS) and Max-Min Ant System (MMAS), and a detailed sensitivity analysis is conducted on the parameters controlling the searching behavior of ACO algorithms. The results obtained indicate that the performance of the two ACO algorithms investigated is significantly better than that of a number of other metaheuristics, such as genetic algorithms and simulated annealing, which have been applied to the same case study previously. In addition, use of the heuristics significantly improves algorithm performance. Also, ACO is found to have similar performance for the case study considered across an identified range of parameter values.
Rights: Copyright © 2005, Association for Computing Machinery
RMID: 0020052314
DOI: 10.1145/1068009.1068046
Appears in Collections:Civil and Environmental Engineering publications
Environment Institute publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.