Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/44516
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLumsden, A.-
dc.contributor.authorHenshall, T.-
dc.contributor.authorDayan, S.-
dc.contributor.authorLardelli, M.-
dc.contributor.authorRichards, R.-
dc.date.issued2007-
dc.identifier.citationHuman Molecular Genetics, 2007; 16(16):1905-1920-
dc.identifier.issn0964-6906-
dc.identifier.issn1460-2083-
dc.identifier.urihttp://hdl.handle.net/2440/44516-
dc.description© The Author 2007. Published by Oxford University Press. All rights reserved.-
dc.description.abstractHuntington's disease is one of nine neurodegenerative disorders caused by expansion of CAG repeats encoding polyglutamine in their respective, otherwise apparently unrelated proteins. Despite these proteins having widespread and overlapping expression patterns in the brain, a specific and unique subset of neurons exhibits particular vulnerability in each disease. It has been hypothesized that perturbation of normal protein function contributes to the specificity of neuronal vulnerability, however the normal biological functions of many of these proteins including the HD gene product, Huntingtin (Htt), are unclear. To explore the roles of Htt, we have used antisense morpholino oligonucleotides to observe the effects of Htt deficiency in early zebrafish development. Knockdown of Htt expression resulted in a variety of developmental defects. Most notably, Htt-deficient zebrafish had hypochromic blood due to decreased haemoglobin production, despite the presence of iron within blood cells. Furthermore, transferrin receptor 1 transcripts were increased, suggesting cellular iron starvation. Provision of iron to the cytoplasm in a bio-available form restored haemoglobin production in Htt-deficient embryos. Since erythroid cells acquire iron via receptor-mediated endocytosis of transferrin, these results suggest a role for Htt in making endocytosed iron accessible for cellular utilization. Iron is required for oxidative energy production, and defects in iron homeostasis and energy metabolism are features of HD pathogenesis that are most pronounced in the major region of neurodegeneration. It is therefore plausible that perturbation of Htt's normal role in the iron pathway (by polyglutamine tract expansion) contributes to HD pathology, and particularly to its neuronal specificity.-
dc.description.statementofresponsibilityAmanda L. Lumsden, Tanya L. Henshall, Sonia Dayan, Michael T. Lardelli and Robert I. Richards-
dc.language.isoen-
dc.publisherOxford Univ Press-
dc.source.urihttp://dx.doi.org/10.1093/hmg/ddm138-
dc.subjectEmbryo, Nonmammalian-
dc.subjectAnimals-
dc.subjectZebrafish-
dc.subjectHuntington Disease-
dc.subjectIron-
dc.subjectHemoglobins-
dc.subjectReceptors, Transferrin-
dc.subjectZebrafish Proteins-
dc.subjectRNA, Messenger-
dc.subjectGene Expression Regulation, Developmental-
dc.subjectGenes, Dominant-
dc.subjectPhenotype-
dc.titleHuntingtin-deficient zebrafish exhibit defects in iron utilization and development-
dc.typeJournal article-
dc.provenanceHuman Molecular Genetics Advance Access published online on June 13, 2007-
dc.contributor.organisationCentre for the Molecular Genetics of Development-
dc.identifier.doi10.1093/hmg/ddm138-
pubs.publication-statusPublished-
dc.identifier.orcidLardelli, M. [0000-0002-4289-444X]-
Appears in Collections:Aurora harvest 6
Centre for the Molecular Genetics of Development publications
Genetics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.