Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: A genetic algorithm-based model to predict CO₂-oil physical properties for dead and live oil
Other Titles: A genetic algorithm-based model to predict CO2-oil physical properties for dead and live oil
Author: Emera, M.
Sarma, H.
Citation: Journal of Canadian Petroleum Technology, 2008; 47(2):52-61
Publisher: Canadian Inst Mining Metallurgy Petroleum
Issue Date: 2008
ISSN: 0021-9487
Statement of
M.K Emera, H.K. Sarma
Abstract: A key parameter in a CO2 flooding process is the CO2 solubility as it contributes to oil viscosity reduction and oil swelling which together, in turn, enhance the oil mobility and oil relative permeability. Often CO2-Oil solubility parameters are established through time-consuming experimental means or using models or correlations available in the literature. However, one must recognize that such models or correlations to predict CO 2-Oil physical properties are valid usually for certain data ranges or site-specific conditions. Furthermore, it is to be noted that there is no reliable model available to predict CO2-live oil physical properties, as most of the available correlations are developed based on dead oil data. In this study, a genetic algorithm (GA)-based technique has been used to develop more reliable correlations to predict CO2 solubility, oil swelling factor, CO2-Oil density and CO2-Oil viscosity for both dead and live oils. These correlations recognize not only all major parameters that affect each physical property, but also take into account the effects of CO 2 liquefaction pressure and oil molecular weight (MW). These correlations have been successfully validated with published experimental data and compared against several widely used correlations. The GA-based correlations have yielded more accurate predictions with lower errors than other correlations tested. Furthermore, unlike these correlations, which are applicable to only limited data ranges and conditions, GA-based correlations can be applied over a wider range and conditions. Another important and useful aspect is that GA-based correlations can also be integrated into any reservoir simulator for CO2-flooding design and simulation.
Keywords: Pressure; Density; Correlation; Relative permeability; Swelling; Viscosity; Physical properties; Carbon dioxide
Description: Paper first presented at the 7th Canadian International Petroleum Conference the 57th Annual Technical Meeting of the Petroleum Society), June 13-15, 2006, in Calgary, Alberta.
Rights: Copyright status unknown
RMID: 0020080166
DOI: 10.2118/08-02-52
Description (link):
Appears in Collections:Australian School of Petroleum publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.