Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/55154
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Type: Journal article
Title: Quantifying the drivers of larval density patterns in two tropical mosquito species to maximize control efficiency
Author: de Little, S.
Bowman, D.
Whelan, P.
Brook, B.
Bradshaw, C.
Citation: Environmental Entomology, 2009; 38(4):1013-1021
Publisher: Entomol Soc Amer
Issue Date: 2009
ISSN: 0046-225X
1938-2936
Statement of
Responsibility: 
Siobhan C. De Little, David M.J.S. Bowman, Peter I. Whelan, Barry W. Brook, and Corey J. A. Bradshaw
Abstract: Understanding the contributions of environmental variation and density feedbacks to changes in vector populations is essential for designing effective vector control. We analyzed monitoring datasets describing larval densities over 7 yr of the two dominant mosquito species, Aedes vigilax (Skuse) and Culex annulirostris (Skuse), of the greater Darwin area (Northern Territory, Australia). Using generalized linear and linear mixed-effects models, we tested hypotheses regarding the environmental determinants of spatio-temporal patterns in relative larval abundance in both species. The most important spatial drivers of Ae. vigilax and Cx. annulirostris larval densities were elevation and water presence. Ae. vigilax density correlates negatively with elevation, whereas there was a positive relationship between Cx. annulirostris density and elevation. These results show how larval habitats used by the saltwater-influenced breeder Ae. vigilax and the obligate freshwater breeder Cx. annulirostris are separated in a tidally influenced swamp. The models examining temporal drivers of larval density also identified this discrimination between freshwater and saltwater habitats. Ae. vigilax larval densities were positively related to maximum tide height and high tide frequency, whereas Cx. annulirostris larval densities were positively related to elevation and rainfall. Adult abundance in the previous month was the most important temporal driver of larval densities in both species, providing a clear dynamical link between the two main life phases in mosquito development. This study shows the importance of considering both spatial and temporal drivers, and intrinsic population dynamics, when planning vector control strategies to reduce larval density, adult population density, and disease transmission effectively.
Keywords: Aedes vigilax
Culex annulirostris
density dependence
larval habitats
vector control
DOI: 10.1603/022.038.0408
Grant ID: http://purl.org/au-research/grants/arc/LP0667619
http://purl.org/au-research/grants/arc/LP0667619
Published version: http://dx.doi.org/10.1603/022.038.0408
Appears in Collections:Aurora harvest 5
Earth and Environmental Sciences publications
Environment Institute Leaders publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.