Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/56196
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation
Author: Zhang, W.
Afshar Vahid, S.
Monro, T.
Citation: Optics Express, 2009; 17(21):19311-19327
Publisher: Optical Soc Amer
Issue Date: 2009
ISSN: 1094-4087
1094-4087
Statement of
Responsibility: 
Wen Qi Zhang, Shahraam Afshar V. and Tanya M. Monro
Abstract: We present a new approach to the design of optical microstructured fibers that have group velocity dispersion (GVD) and effective nonlinear coefficient (gamma ) tailored for supercontinuum (SC) generation. This hybrid approach combines a genetic algorithm (GA) with pulse propagation modeling, but without include it into the GA loop, to allow the efficient design of fibers that are capable of generating highly coherent and large bandwidth SC in the mid-infrared (Mid-IR) spectrum. To the best of our knowledge, this is the first use of a GA to design fiber for SC generation. We investigate the robustness of these fiber designs to variation in the fiber's structural parameters. The optimized fiber structure based on a type of tellurite glass (70TeO(2) - 10 Na(2)O - 20 ZnF(2)) is predicted to have near-zero group velocity dispersion (< +/-2 ps/nm/km) from 2 to 3 microm, and a effective nonlinear coefficient of gamma approximately 174 W(-1)km(-1) at 2 microm. The SC output of this fiber shows a significant bandwidth and coherence increase compare to a fiber with a single zero group velocity dispersion wavelength at 2 microm.
Keywords: Spectrum Analysis, Raman; Algorithms; Nonlinear Dynamics; Optical Phenomena
Rights: © 2009 Optical Society of America
RMID: 0020092975
DOI: 10.1364/OE.17.019311
Appears in Collections:IPAS publications

Files in This Item:
File Description SizeFormat 
hdl_56196.pdfPublished version4.72 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.