Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Partial-interaction time dependent behaviour of reinforced concrete beams
Author: Visintin, P.
Oehlers, D.
Haskett, M.
Citation: Engineering Structures, 2013; 49:408-420
Publisher: Elsevier Sci Ltd
Issue Date: 2013
ISSN: 0141-0296
Statement of
P. Visintin, D.J. Oehlers, M. Haskett
Abstract: When a concrete member is subjected to a load its response is both instantaneous and time dependent. The influence of time dependent deformation is particularly import because it may lead to serviceability failures in structural members where deflections or crack widths are excessive. Current analysis techniques for reinforced concrete members are built around a moment-curvature (M/χ) approach that is based on the assumption of full-interaction (FI), that is, the reinforcement does not slip relative to the concrete which encases it and, consequently, the widening of cracks and their effect on deflection cannot be simulated directly. Hence in order to determine member deflection, empirically derived expressions for the flexural rigidity of a member (EIemp) are required to allow for the tension stiffening associated with cracking. In contrast to this FI M/χ approach, a moment-rotation (M/θ) approach has been developed which allows for slip between the reinforcement and concrete, that is partial-interaction (PI) and which, consequently, obviates the need for the empirically derived flexural rigidities (EIemp). The PI M/θ approach simulates directly, through partial-interaction structural mechanics, the formation and widening of cracks as the reinforcement pulls from the concrete at crack faces and, consequently, automatically allows for tension stiffening. Hence the PI M/θ approach is a useful improvement of the current FI M/χ approach as it quantifies the flexural rigidities associated with tension stiffening which can then be used in standard analysis techniques. It is also shown in this paper that the moment rotation approach can be used to derive flexural rigidities that account for the long term effects of creep and shrinkage as well as predicting the effects of creep and shrinkage on cracks widths and spacings. © 2012 Elsevier Ltd.
Keywords: Reinforced concrete beams
Partial interaction theory
Rights: © 2012 Elsevier Ltd. All rights reserved.
DOI: 10.1016/j.engstruct.2012.11.025
Published version:
Appears in Collections:Aurora harvest
Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.