Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: β-lactam resistance in gram-negative pathogens isolated from animals
Other Titles: beta-lactam resistance in gram-negative pathogens isolated from animals
Author: Trott, D.
Citation: Current Pharmaceutical Design, 2013; 19(2):239-249
Publisher: Bentham Science Publ Ltd
Issue Date: 2013
ISSN: 1381-6128
Statement of
Darren Trott
Abstract: Although β-lactams remain a cornerstone of veterinary therapeutics, only a restricted number are actually approved for use in food-producing livestock in comparison to companion animals and wildlife. Nevertheless, both registered and off-label use of third and fourth-generation cephalosporins in livestock may have influenced the emergence of plasmid-encoded AmpC β-lactamases (pAmpC) (mainly CMY-2) and CTX-M extended-spectrum β-lactamases (ESBLs) in both Gram-negative pathogens and commensals isolated from animals. This presents a public health concern due to the potential risk of transfer of β-lactam-resistant pathogens from livestock to humans through food. The recent detection of pAmpC and ESBLs in multidrug-resistant Enterobacteriaceae isolated from dogs has also confirmed the public health importance of β-lactam resistance in companion animals, though in this case, human-to-animal transmission may be equally as relevant as animal-to-human transmission. Identification of pAmpC and ESBLs in Enterobacteriaceae isolated from wildlife and aquaculture species may be evidence of environmental selection pressure arising from both human and veterinary use of β- lactams. Such selection pressure in animals could be reduced by the availability of reliable alternative control measures such as vaccines, bacteriophage treatments and/or competitive exclusion models for endemic production animal diseases such as colibacillosis. The global emergence and pandemic spread of extraintestinal pathogenic E. coli O25-ST131 strains expressing CTX-M-15 ESBL in humans and its recent detection in livestock, companion animals and wildlife is a major cause for concern and goes against the paradigm that Gramnegative pathogens do not necessarily have to lose virulence in compensation for acquiring resistance.
Keywords: Escherichia coli
antimicrobial resistance
companion animals
Rights: Copyright status unknown
DOI: 10.2174/138161213804070339
Appears in Collections:Animal and Veterinary Sciences publications
Aurora harvest 4

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.