Please use this identifier to cite or link to this item:
Type: Conference paper
Title: A unified solution for shear design of FRP reinforced concrete structures
Author: Zhang, T.
Griffith, M.
Visintin, P.
Citation: Proceedings of the 7th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2014), 2014 / El-Hacha, R. (ed./s), pp.1-6
Publisher: International Institute for FRP in Construction
Issue Date: 2014
ISBN: 9781771363082
Conference Name: The 7th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2014) (20 Aug 2014 - 22 Aug 2014 : Vancouver, Canada)
Editor: El-Hacha, R.
Statement of
Tao Zhang, Phillip Visintin, Michael Griffith
Abstract: Due to the complexities of the shear carrying mechanism in RC members, most shear design methods are derived empirically and do not physically simulate the actual shear failure mechanism. Consequently these empirical approaches can only be applied within the bounds of the testing population from which they were derived. This hinders the development of innovative materials such as FRP reinforcement or fiber-reinforced concrete that cannot be accommodated without a significant amount of testing for calibration which is both expensive and time consuming. To address this problem, a mechanics based segmental approach which simulates the behaviour seen in practice and can cope with any type of reinforcement and concrete has been proposed. On the basis of the shear transfer mechanism, a unified closed form solution is derived and is shown to be applicable for concrete structures reinforced with steel or FRP. The approach is validated against a database of 209 FRP and 626 steel reinforced experimental results and the proposed unified solution is shown to have great potential in shear design of concrete structures.
Rights: Copyright © CICE 2014 - International Institute for FRP in Construction
Grant ID:
Appears in Collections:Aurora harvest 2
Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.