Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/75685
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBreed, M.-
dc.contributor.authorOttewell, K.-
dc.contributor.authorGardner, M.-
dc.contributor.authorMarklund, M.-
dc.contributor.authorStead, M.-
dc.contributor.authorHarris, J.-
dc.contributor.authorLowe, A.-
dc.date.issued2015-
dc.identifier.citationHeredity, 2015; In Press(2):1-8-
dc.identifier.issn0018-067X-
dc.identifier.issn1365-2540-
dc.identifier.urihttp://hdl.handle.net/2440/75685-
dc.description.abstractHabitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha⁻¹; isolated pasture=1.7 trees ha⁻¹; population area=10 km²). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow.-
dc.description.statementofresponsibilityMF Breed, KM Ottewell, MG Gardner, MHK Marklund, MG Stead, JBC Harris and AJ Lowe-
dc.language.isoen-
dc.publisherNature Publishing Group-
dc.rights© 2012 Macmillan Publishers Limited-
dc.source.urihttp://dx.doi.org/10.1038/hdy.2012.72-
dc.subjectEucalyptus-
dc.subjecthabitat disturbance-
dc.subjectinbreeding depression-
dc.subjectmating patterns-
dc.subjectplant genetic resources-
dc.subjectrevegetation-
dc.titleMating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt-
dc.typeJournal article-
dc.identifier.doi10.1038/hdy.2012.72-
pubs.publication-statusIn preparation-
dc.identifier.orcidBreed, M. [0000-0001-7810-9696]-
dc.identifier.orcidLowe, A. [0000-0003-1139-2516]-
Appears in Collections:Aurora harvest
Earth and Environmental Sciences publications
Environment Institute Leaders publications
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.