Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/91940
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Evaluation and breeding of tedera for Mediterranean climates in southern Australia
Author: Real, D.
Oldham, C.
Nelson, M.
Croser, J.
Castello, M.
Verbyla, A.
Pradhan, A.
Van Burgel, A.
Méndez, P.
Correal, E.
Teakle, N.
Revell, C.
Ewing, M.
Citation: Crop and Pasture Science, 2014; 65(11):1114-1131
Publisher: CSIRO
Issue Date: 2014
ISSN: 1836-0947
1836-5795
Statement of
Responsibility: 
D. Real, C. M. Oldham, M. N. Nelson, J. Croser, M. Castello, A. Verbyla, A. Pradhan, A. Van Burgel, P. Méndez, E. Correal, N. L. Teakle, C. K. Revell, and M. A. Ewing
Abstract: Tedera (Bituminaria bituminosa C.H. Stirton var. albomarginata and var. crassiuscula) has been identified as one of the most productive and drought-tolerant species of herbaceous perennial legumes based on 6 years of field evaluation in Western Australia in areas with Mediterranean climate and annual rainfall ranging from 200 to 600 mm. Importantly, tedera demonstrated broad adaptation to diverse soils, and some accessions have shown moderate levels of tolerance to waterlogging and salinity. Tedera exhibits minimal leaf shedding during summer and autumn. Economic modelling strongly suggests that giving livestock access to green tedera in summer and autumn will dramatically increase farm profit by reducing supplementary feeding. The breeding program (2006–12) evaluated the available genetic diversity of tedera for its field performance in seven nurseries with 6498 spaced plants in total covering a wide variation in rainfall, soils and seasons. Best overall plants were selected using a multivariate selection index generated with best linear unbiased predictors (BLUPs) of dry matter cuts and leaf retention traits. The breeding program also evaluated tedera for grazing tolerance, grazing preference by livestock, waterlogging tolerance, seed production, cold tolerance, disease susceptibility and presence of secondary compounds. Tedera is a diploid, self-pollinated species. Therefore, 28 elite parents were hand-crossed in several combinations to combine outstanding attributes of parents; F1 hybrids were confirmed with the aid of highly polymorphic, simple sequence repeat markers. The F1s were progressed to F4s by single-seed descent breeding. Elite parent plants were selfed for two generations to be progressed in the breeding program without hybridisation. Over time, selections from the crossing and selfing program will deliver cultivars of three ideotypes: (i) drought-tolerant, (ii) cold- and drought-tolerant, (iii) waterlogging- and drought-tolerant.
Rights: Journal compilation © CSIRO 2014
DOI: 10.1071/CP13313
Published version: http://dx.doi.org/10.1071/cp13313
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 7

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.